MetaBox+: A new Region Based Active Learning Method for Semantic
Segmentation using Priority Maps
- URL: http://arxiv.org/abs/2010.01884v1
- Date: Mon, 5 Oct 2020 09:36:47 GMT
- Title: MetaBox+: A new Region Based Active Learning Method for Semantic
Segmentation using Priority Maps
- Authors: Pascal Colling, Lutz Roese-Koerner, Hanno Gottschalk, Matthias
Rottmann
- Abstract summary: We present a novel active learning method for semantic image segmentation, called MetaBox+.
For acquisition, we train a meta regression model to estimate the segment-wise Intersection over Union (IoU) of each predicted segment of unlabeled images.
We compare our method to entropy based methods, where we consider the entropy as uncertainty of the prediction.
- Score: 4.396860522241306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel region based active learning method for semantic image
segmentation, called MetaBox+. For acquisition, we train a meta regression
model to estimate the segment-wise Intersection over Union (IoU) of each
predicted segment of unlabeled images. This can be understood as an estimation
of segment-wise prediction quality. Queried regions are supposed to minimize to
competing targets, i.e., low predicted IoU values / segmentation quality and
low estimated annotation costs. For estimating the latter we propose a simple
but practical method for annotation cost estimation. We compare our method to
entropy based methods, where we consider the entropy as uncertainty of the
prediction. The comparison and analysis of the results provide insights into
annotation costs as well as robustness and variance of the methods. Numerical
experiments conducted with two different networks on the Cityscapes dataset
clearly demonstrate a reduction of annotation effort compared to random
acquisition. Noteworthily, we achieve 95%of the mean Intersection over Union
(mIoU), using MetaBox+ compared to when training with the full dataset, with
only 10.47% / 32.01% annotation effort for the two networks, respectively.
Related papers
- Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation [107.72926721837726]
coarse annotation is a low-cost but highly effective alternative for training semantic segmentation models.
We propose a coarse-to-fine self-training framework that generates pseudo labels for unlabeled regions of coarsely annotated data.
Our method achieves a significantly better performance vs annotation cost tradeoff, yielding a comparable performance to fully annotated data with only a small fraction of the annotation budget.
arXiv Detail & Related papers (2022-12-15T15:43:42Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation [25.626882426111198]
Unsupervised domain adaptation (UDA) for semantic segmentation has recently gained increasing research attention.
In this paper, we propose a novel two-stage entropy-based UDA method for semantic segmentation.
Our method achieves state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the lightweight BiSeNet.
arXiv Detail & Related papers (2022-08-23T03:48:48Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Distribution-aware Margin Calibration for Semantic Segmentation in
Images [78.65312390695038]
Jaccard index, also known as Intersection-over-Union (IoU), is one of the most critical evaluation metrics in image semantic segmentation.
Direct optimization of IoU score is very difficult because the learning objective is neither differentiable nor decomposable.
We propose a margin calibration method, which can be directly used as a learning objective, for an improved generalization of IoU over the data-distribution.
arXiv Detail & Related papers (2021-12-21T22:38:25Z) - Weighted Intersection over Union (wIoU) for Evaluating Image Segmentation [0.9790236766474198]
We propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation.
First, it builds a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor.
We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility.
arXiv Detail & Related papers (2021-07-21T02:59:59Z) - Learning Independent Instance Maps for Crowd Localization [44.6430092887941]
We propose an end-to-end and straightforward framework for crowd localization, named Independent Instance Map segmentation (IIM)
IIM segment crowds into independent connected components, the positions and the crowd counts are obtained.
To improve the segmentation quality for different density regions, we present a differentiable Binarization Module (BM)
BM brings two advantages into localization models: 1) adaptively learn a threshold map for different images to detect each instance more accurately; 2) directly train the model using loss on binary predictions and labels.
arXiv Detail & Related papers (2020-12-08T02:17:19Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.
Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only 1% slower)
arXiv Detail & Related papers (2020-11-18T08:42:32Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - Covariate Distribution Aware Meta-learning [3.494950334697974]
We propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations.
We demonstrate the gains of our algorithm over bootstrapped based meta-learning baselines on popular classification benchmarks.
arXiv Detail & Related papers (2020-07-06T05:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.