論文の概要: A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction
- arxiv url: http://arxiv.org/abs/2102.07899v1
- Date: Tue, 16 Feb 2021 00:39:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 13:58:33.063623
- Title: A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction
- Title(参考訳): 直接心臓メッシュ再構成のためのディープラーニングアプローチ
- Authors: Fanwei Kong, Nathan Wilson, Shawn C. Shadden
- Abstract要約: 本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
- 参考スコア(独自算出の注目度): 1.8047694351309207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated construction of surface geometries of cardiac structures from
volumetric medical images is important for a number of clinical applications.
While deep-learning based approaches have demonstrated promising reconstruction
precision, these approaches have mostly focused on voxel-wise segmentation
followed by surface reconstruction and post-processing techniques. However,
such approaches suffer from a number of limitations including disconnected
regions or incorrect surface topology due to erroneous segmentation and
stair-case artifacts due to limited segmentation resolution. We propose a novel
deep-learning-based approach that directly predicts whole heart surface meshes
from volumetric CT and MR image data. Our approach leverages a graph
convolutional neural network to predict deformation on mesh vertices from a
pre-defined mesh template to reconstruct multiple anatomical structures in a 3D
image volume. Our method demonstrated promising performance of generating
high-resolution and high-quality whole heart reconstructions and outperformed
prior deep-learning based methods on both CT and MR data in terms of precision
and surface quality. Furthermore, our method can more efficiently produce
temporally-consistent and feature-corresponding surface mesh predictions for
heart motion from CT or MR cine sequences, and therefore can potentially be
applied for efficiently constructing 4D whole heart dynamics.
- Abstract(参考訳): ボリューム医療画像から心臓構造の表面形状の自動構築は、多くの臨床用途にとって重要です。
深層学習に基づくアプローチは、有望な再構築精度を示しているが、これらのアプローチは、主に、表面再構成と後処理技術による、ボクセルワイドセグメンテーションに焦点を当てている。
しかし、そのようなアプローチは、誤ったセグメンテーションによる切断領域や誤った表面トポロジー、セグメンテーションの解像度の制限による階段アーティファクトなど、多くの制限に苦しめられている。
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本研究では,グラフ畳み込みニューラルネットワークを用いて,メッシュテンプレートからメッシュ頂点の変形を予測し,複数の解剖学的構造を3次元画像ボリュームで再構成する。
提案手法は,高分解能,高画質な全心再建術を作製し,CTとMRの両方の深層学習法を精度,表面品質の両面で優れることを示した。
さらに、CTまたはMRシネ配列から心拍動に対する時間整合性および特徴対応表面メッシュ予測をより効率的に作成できるため、4D全体の心臓ダイナミクスを効率的に構築するために適用することができる。
関連論文リスト
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI [43.47826598981827]
画像間直接抽出のための新しいアーキテクチャであるHybridVNetを紹介する。
グラフ構造として符号化することで,表面および体積メッシュを効率的に処理できることを示す。
我々のモデルは、従来の畳み込みネットワークと変分グラフ生成モデル、深い監督とメッシュ固有の正規化を組み合わせたものです。
論文 参考訳(メタデータ) (2023-11-22T21:51:29Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
本稿では,複数の臨床的に不可欠な結果を生成する,エンドツーエンドの潜在空間ベースのフレームワークであるDeepReconを提案する。
本手法は,心構造に対する正確な意味情報を含むシネ画像の最適潜時表現を同定する。
特に,本モデルでは,正確な意味情報と心構造のセグメンテーションを併用して合成画像を生成する。
論文 参考訳(メタデータ) (2022-06-14T20:46:11Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
深層学習に基づくアルゴリズムであるVox2Cortexを提案する。
我々は3つの脳MRIデータセットの広範な実験で、我々のメッシュは現場の最先端の方法で再構築されたものと同じくらい正確であることを示した。
論文 参考訳(メタデータ) (2022-03-17T17:06:00Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。