論文の概要: Forecasting COVID-19 daily cases using phone call data
- arxiv url: http://arxiv.org/abs/2010.02252v1
- Date: Mon, 5 Oct 2020 18:07:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 22:17:12.676021
- Title: Forecasting COVID-19 daily cases using phone call data
- Title(参考訳): 電話データによる毎日の感染者予測
- Authors: Bahman Rostami-Tabar and Juan F. Rendon-Sanchez
- Abstract要約: 本稿では,コールデータを用いて日次確認症例数を予測するために最適化した簡易な多重線形回帰モデルを提案する。
提案手法は, ARIMA, ETS, および呼び出しデータのない回帰モデルより優れており, 3点予測誤差, 1点予測間隔, 2点の確率予測精度測定によって評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need to forecast COVID-19 related variables continues to be pressing as
the epidemic unfolds. Different efforts have been made, with compartmental
models in epidemiology and statistical models such as AutoRegressive Integrated
Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence
models. These efforts have proved useful in some instances by allowing decision
makers to distinguish different scenarios during the emergency, but their
accuracy has been disappointing, forecasts ignore uncertainties and less
attention is given to local areas. In this study, we propose a simple Multiple
Linear Regression model, optimised to use call data to forecast the number of
daily confirmed cases. Moreover, we produce a probabilistic forecast that
allows decision makers to better deal with risk. Our proposed approach
outperforms ARIMA, ETS and a regression model without call data, evaluated by
three point forecast error metrics, one prediction interval and two
probabilistic forecast accuracy measures. The simplicity, interpretability and
reliability of the model, obtained in a careful forecasting exercise, is a
meaningful contribution to decision makers at local level who acutely need to
organise resources in already strained health services. We hope that this model
would serve as a building block of other forecasting efforts that on the one
hand would help front-line personal and decision makers at local level, and on
the other would facilitate the communication with other modelling efforts being
made at the national level to improve the way we tackle this pandemic and other
similar future challenges.
- Abstract(参考訳): 感染拡大に伴い、新型コロナウイルス関連の変数の予測の必要性は引き続き強まっている。
疫学における区画モデルや、自己回帰的統合移動平均(arima)、指数的平滑化(ets)、計算知能モデルなどの統計モデルなど、様々な取り組みがなされている。
これらの取り組みは、いくつかのケースでは、意思決定者が緊急時に異なるシナリオを区別できるようにすることで有用であることが証明されているが、その正確さは失望し、予測は不確実性を無視し、地域への注意を減らしている。
そこで本研究では,コールデータを用いて日次確認症例数を予測できる簡易な多重線形回帰モデルを提案する。
さらに,意思決定者がよりリスクに対処できる確率的予測を行う。
提案手法はARIMA, ETS, および呼び出しデータのない回帰モデルより優れており, 3点予測誤差, 1点予測間隔, 2点の確率予測精度測定により評価される。
注意深い予測作業で得られたモデルの単純さ、解釈可能性、信頼性は、既に歪んだ医療サービスにおいて資源を組織する必要がある地方レベルの意思決定者にとって有意義な貢献である。
このモデルが、地域レベルでのフロントラインの個人および意思決定者を支援する他の予測努力の構成要素として機能し、また、このパンデミックへの取り組みや、その他の今後の課題に対処するための、国内レベルで行われている他のモデリング取り組みとのコミュニケーションを促進することを願っている。
関連論文リスト
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では、時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
提案手法は,重要な事象を特定するために将来的なデータを解析する検出モデルと,これらの事象を現在のデータに基づいて予測する予測モデルである。
予測モデルと検出モデルの間に不一致が発生した場合、予測モデルはより実質的な更新を行う。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Random Forest of Epidemiological Models for Influenza Forecasting [7.050453841068465]
本稿では,ベースラインモデルSIkJalphaの個々の予測子を利用して,その性能を向上させるツリーアンサンブルモデルの設計を提案する。
我々は、ランダムフォレストに基づくアプローチが、平均絶対誤差、カバレッジ、重み付き間隔スコアの観点から、個々の予測者の予測を改善することを実証した。
論文 参考訳(メタデータ) (2022-06-17T18:47:40Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts [2.3096751699592137]
複数の時系列にまたがってトレーニングされたグローバル予測モデル(GFM)は、多くの予測競合や実世界のアプリケーションにおいて優れた結果を示している。
しかしながら、GFMは通常、特に特定の時系列に対する解釈可能性に欠ける。
本稿では,GFMからの予測を説明するために,局所モデルに依存しない新しい解法を提案する。
論文 参考訳(メタデータ) (2021-11-13T00:17:52Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation in Cancer Survival Prediction [8.827764645115955]
生存モデルは、がん治療プロトコルの開発など、様々な分野で使用されている。
本稿では,より正確な生存予測を与えるだけでなく,生存不確実性をより正確に評価するバイーシアンフレームワークを提案する。
提案手法は,不確実性推定のための変分推論,非線形および時間変化リスクモデルの推定のためのニューラルマルチタスクロジスティック回帰,および高次元データを用いた作業に先立って追加の空間性誘導の組み合わせである。
論文 参考訳(メタデータ) (2020-03-19T05:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。