論文の概要: Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior
- arxiv url: http://arxiv.org/abs/2010.02780v1
- Date: Tue, 6 Oct 2020 14:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 05:35:43.854495
- Title: Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior
- Title(参考訳): 友情は私たちが必要とするすべてである - 顧客の振る舞いをモデリングするためのマルチグラフ埋め込みアプローチ
- Authors: Amir Jalilifard, Dehua Chen, Lucas Pereira Lopes, Isaac Ben-Akiva,
Pedro Henrique Gon\c{c}alves Inazawa
- Abstract要約: 顧客を非線形に表現するためのマルチグラフ埋め込み手法を提案する。
我々は,友人関係の情報を入手することでのみ,ユーザの将来の行動を合理的に予測することができる。
- 参考スコア(独自算出の注目度): 1.181206257787103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding customer behavior is fundamental for many use-cases in
industry, especially in accelerated growth areas such as fin-tech and
e-commerce. Structured data are often expensive, time-consuming and inadequate
to analyze and study complex customer behaviors. In this paper, we propose a
multi-graph embedding approach for creating a non-linear representation of
customers in order to have a better knowledge of their characteristics without
having any prior information about their financial status or their interests.
By applying the current method we are able to predict users' future behavior
with a reasonably high accuracy only by having the information of their
friendship network. Potential applications include recommendation systems and
credit risk forecasting.
- Abstract(参考訳): 顧客行動を理解することは、特にフィンテックや電子商取引のような急速な成長分野において、業界における多くのユースケースにおいて基礎となる。
構造化データは、しばしばコストがかかり、時間がかかり、複雑な顧客の振る舞いを分析し、研究するのに不十分である。
本稿では,財務状況や利害関係に関する事前情報を持たずに,顧客の特徴をよりよく知るために,顧客を非線形に表現するためのマルチグラフ埋め込み手法を提案する。
本手法を適用すれば,友人関係ネットワークの情報のみを用いて,利用者の将来行動の予測を合理的に高精度に行うことができる。
潜在的な応用には、レコメンデーションシステムと信用リスク予測が含まれる。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
クライアント関係グラフを用いた個人化フェデレーション知識グラフを提案する。
PFedEGは、近隣のクライアントから埋め込まれたエンティティを集約することで、各クライアントに対してパーソナライズされた補完知識を学習する。
我々は4つのベンチマークデータセットの広範な実験を行い、その手法を最先端モデルに対して評価する。
論文 参考訳(メタデータ) (2024-06-17T17:44:53Z) - Early Churn Prediction from Large Scale User-Product Interaction Time
Series [0.0]
本稿では,歴史的データを用いたユーザチャーン予測に関する徹底的な研究を行う。
我々は,顧客満足度予測モデルを作成し,企業の誘惑傾向の理解と効果的な保留計画の策定を促進することを目的としている。
論文 参考訳(メタデータ) (2023-09-25T08:44:32Z) - Retail store customer behavior analysis system: Design and
Implementation [2.215731214298625]
本稿では,顧客行動の数学的モデリング,効率的なディープラーニングに基づく行動分析,個人と集団の行動可視化という3つの主要な要素を含むフレームワークを提案する。
各モジュールとシステム全体が、小売店の実際の状況からのデータを使用して検証された。
論文 参考訳(メタデータ) (2023-09-05T06:26:57Z) - A Meta-learning based Stacked Regression Approach for Customer Lifetime
Value Prediction [3.6002910014361857]
顧客ライフタイムバリュー(英:Customer Lifetime Value、CLV)とは、取引/購入の合計金額である。
CLVは、銀行、保険、オンラインエンタテインメント、ゲーム、Eコマースなど、いくつかの異なるビジネスドメインでアプリケーションを見つける。
本稿では,効果的かつ包括的かつシンプルかつ解釈可能なシステムを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:22:02Z) - Customer Churn Prediction Model using Explainable Machine Learning [0.0]
この論文の主な目的は、チャーンする可能性が最も高い潜在的な顧客を予測するのに役立つ、ユニークな顧客チャーン予測モデルを開発することである。
各種木に基づく機械学習手法とアルゴリズムの性能評価と解析を行った。
モデル説明可能性と透明性を改善するため,提案手法では,特徴の組合せについてシェープ値を計算する手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T04:45:57Z) - Can Interpretable Reinforcement Learning Manage Assets Your Way? [0.0]
マシンラーニングは、顧客のニーズや好みを深く理解し、調整する、という約束を守ります。
我々は、本質的に解釈可能な強化学習エージェントを訓練し、プロトタイプの財務的性格特性に合わせた投資アドバイスを行う。
我々は、訓練されたエージェントのアドバイスが、意図した特性に固執していること、そして、明確な言及なしに、リスクの概念と、政策の収束性の改善を観察する。
論文 参考訳(メタデータ) (2022-02-18T07:59:08Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Eコマースプラットフォーム上での製品質問回答(PQA)は、インテリジェントオンラインショッピングアシスタントとして機能するため、注目を集めている。
なぜなら、多くの顧客は、自分でのみカスタマイズされた情報でパーソナライズされた回答を見たいと思っているからです。
PQAにおけるパーソナライズされた回答を生成するための,新しいマルチパースペクティブなユーザ嗜好モデルを提案する。
論文 参考訳(メタデータ) (2021-12-27T07:51:49Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
スーパーアプリは、ユーザーとコマースの相互作用についての考え方を変えました。
本稿では,スーパーアプリ内のユーザ間のインタラクションの違いが,借り手行動を予測する新たな情報源となるかを検討する。
論文 参考訳(メタデータ) (2021-02-19T15:13:06Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
テールユーザに注力することで、より多くのメリットをもたらし、長いテールの問題に対処できる、と私たちは主張しています。
具体的には、頭部から尾部への知識伝達を容易にするために、勾配アライメントを提案し、敵のトレーニングスキームを採用する。
論文 参考訳(メタデータ) (2020-10-22T03:12:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。