論文の概要: Retail store customer behavior analysis system: Design and
Implementation
- arxiv url: http://arxiv.org/abs/2309.03232v1
- Date: Tue, 5 Sep 2023 06:26:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 15:28:11.999463
- Title: Retail store customer behavior analysis system: Design and
Implementation
- Title(参考訳): 小売店舗の顧客行動分析システム:設計と実装
- Authors: Tuan Dinh Nguyen, Keisuke Hihara, Tung Cao Hoang, Yumeka Utada,
Akihiko Torii, Naoki Izumi, Nguyen Thanh Thuy and Long Quoc Tran
- Abstract要約: 本稿では,顧客行動の数学的モデリング,効率的なディープラーニングに基づく行動分析,個人と集団の行動可視化という3つの主要な要素を含むフレームワークを提案する。
各モジュールとシステム全体が、小売店の実際の状況からのデータを使用して検証された。
- 参考スコア(独自算出の注目度): 2.215731214298625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding customer behavior in retail stores plays a crucial role in
improving customer satisfaction by adding personalized value to services.
Behavior analysis reveals both general and detailed patterns in the interaction
of customers with a store items and other people, providing store managers with
insight into customer preferences. Several solutions aim to utilize this data
by recognizing specific behaviors through statistical visualization. However,
current approaches are limited to the analysis of small customer behavior sets,
utilizing conventional methods to detect behaviors. They do not use deep
learning techniques such as deep neural networks, which are powerful methods in
the field of computer vision. Furthermore, these methods provide limited
figures when visualizing the behavioral data acquired by the system. In this
study, we propose a framework that includes three primary parts: mathematical
modeling of customer behaviors, behavior analysis using an efficient deep
learning based system, and individual and group behavior visualization. Each
module and the entire system were validated using data from actual situations
in a retail store.
- Abstract(参考訳): 小売店舗における顧客行動を理解することは、サービスにパーソナライズされた価値を加えることで顧客満足度を向上させる上で重要な役割を果たす。
行動分析は、顧客と店舗アイテムや他の人々とのインタラクションにおける一般的なパターンと詳細なパターンを明らかにし、店長に顧客の好みに関する洞察を提供する。
いくつかのソリューションは、統計的視覚化によって特定の振る舞いを認識することで、このデータを活用することを目的としている。
しかし、現在のアプローチは、従来の行動検出手法を利用して、小さな顧客の行動集合の分析に限られている。
彼らは、コンピュータビジョンの分野で強力な手法であるディープニューラルネットワークのようなディープラーニング技術を使用しない。
さらに、システムによって取得された行動データを可視化する際には、これらの手法は限られた数値を提供する。
本研究では,顧客行動の数学的モデリング,効率的な深層学習システムを用いた行動分析,個人および集団行動の可視化という3つの主成分を含む枠組みを提案する。
各モジュールとシステム全体は、小売店舗の実際の状況からのデータを使用して検証された。
関連論文リスト
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
論文 参考訳(メタデータ) (2024-10-03T13:02:07Z) - Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
クライアント関係グラフを用いた個人化フェデレーション知識グラフを提案する。
PFedEGは、近隣のクライアントから埋め込まれたエンティティを集約することで、各クライアントに対してパーソナライズされた補完知識を学習する。
我々は4つのベンチマークデータセットの広範な実験を行い、その手法を最先端モデルに対して評価する。
論文 参考訳(メタデータ) (2024-06-17T17:44:53Z) - What User Behaviors Make the Differences During the Process of Visual
Analytics? [1.5285292154680246]
本研究では,ユーザ行動の包括的データ収集と時系列分類手法を用いた分析手法を提案する。
ユーザスタディでは,デスクトップと没入型2種類の可視化システムを用いて,多様な可視化タスクのユーザ行動を収集している。
この結果から,視覚分析の過程でユーザ行動の区別が可能であり,ユーザの身体行動とそれらが実行する可視化タスクとの間には強い関連性があることが判明した。
論文 参考訳(メタデータ) (2023-11-01T17:45:52Z) - A Hybrid Statistical-Machine Learning Approach for Analysing Online
Customer Behavior: An Empirical Study [2.126171264016785]
我々は、中国最大のオンライン小売店であるJDにおいて、特定の商品カテゴリーに対する454,897人のオンライン顧客行動を分析するハイブリッド解釈モデルを開発した。
以上の結果から,顧客の製品選択が約束される納期に無関心であることが分かるが,この要因は顧客の注文量に大きな影響を及ぼす。
特定のディスカウントアプローチがより効果的である製品クラスを特定し、異なるディスカウントツールの使用を改善するためのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2022-12-01T19:37:29Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
本研究は,小売分析と統計学習のアイデアを疎結合に組み合わせ,買い物客のオンラインギフトストアへの買い物嗜好を学習する方法を報告する。
論文 参考訳(メタデータ) (2021-11-11T05:36:39Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - OPAM: Online Purchasing-behavior Analysis using Machine learning [0.8121462458089141]
本稿では,教師なし・教師なし・半教師付き学習手法を用いた顧客の購買行動分析システムを提案する。
提案システムは,顧客カテゴリやクラスタを特定するために,セッションおよびユーザジャーニーレベルの購買行動を分析する。
論文 参考訳(メタデータ) (2021-02-02T17:29:52Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
テールユーザに注力することで、より多くのメリットをもたらし、長いテールの問題に対処できる、と私たちは主張しています。
具体的には、頭部から尾部への知識伝達を容易にするために、勾配アライメントを提案し、敵のトレーニングスキームを採用する。
論文 参考訳(メタデータ) (2020-10-22T03:12:02Z) - Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior [1.181206257787103]
顧客を非線形に表現するためのマルチグラフ埋め込み手法を提案する。
我々は,友人関係の情報を入手することでのみ,ユーザの将来の行動を合理的に予測することができる。
論文 参考訳(メタデータ) (2020-10-06T14:50:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。