Quantum Information for Particle Theorists
- URL: http://arxiv.org/abs/2010.02931v2
- Date: Wed, 30 Dec 2020 21:06:41 GMT
- Title: Quantum Information for Particle Theorists
- Authors: Joseph D. Lykken
- Abstract summary: Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020.
The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence.
Links to a Python notebook and Mathematica notebooks will allow the reader to reproduce and extend the calculations, as well as perform five experiments on a quantum simulator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26
June 2020. The topics covered include quantum circuits, entanglement, quantum
teleportation, Bell inequalities, quantum entropy and decoherence, classical
versus quantum measurement, the area law for entanglement entropy in quantum
field theory, and simulating quantum field theory on a quantum computer. Along
the way we confront the fundamental sloppiness of how we all learned (and some
of us taught) quantum mechanics in college. Links to a Python notebook and
Mathematica notebooks will allow the reader to reproduce and extend the
calculations, as well as perform five experiments on a quantum simulator.
Related papers
- A Physics Lab Inside Your Head: Quantum Thought Experiments as an
Educational Tool [0.0]
I will show how presenting thought experiments using quantum circuits can demystify apparent quantum paradoxes.
I will explain how thought experiments can be used as a first introduction to quantum.
I will outline a workshop based on the "quantum bomb tester" for school students as young as 11.
arXiv Detail & Related papers (2023-12-13T02:09:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Hello Quantum World! A rigorous but accessible first-year university
course in quantum information science [0.0]
Hello Quantum World! introduces a broad range of fundamental quantum information and computation concepts.
Some of the topics covered include superposition, entanglement, quantum gates, teleportation, quantum algorithms, and quantum error correction.
arXiv Detail & Related papers (2022-09-25T18:59:47Z) - Is there evidence for exponential quantum advantage in quantum
chemistry? [45.33336180477751]
The idea to use quantum mechanical devices to simulate other quantum systems is commonly ascribed to Feynman.
It may be prudent to assume exponential speedups are not generically available for this problem.
arXiv Detail & Related papers (2022-08-03T16:33:57Z) - Effects of Quantum Computing in Security [0.0]
We investigate quantum computing-based attacks and shed light on possible future developments.
The existence of quantum computers up to 65 qubits is known.
arXiv Detail & Related papers (2021-09-27T14:21:40Z) - Quantum Computing for Inflationary, Dark Energy and Dark Matter
Cosmology [1.1706540832106251]
Quantum computing is an emerging new method of computing which excels in simulating quantum systems.
We show how to apply the Variational Quantum Eigensolver (VQE) and Evolution of Hamiltonian (EOH) algorithms to solve the Wheeler-DeWitt equation.
We find excellent agreement with classical computing results and describe the accuracy of the different quantum algorithms.
arXiv Detail & Related papers (2021-05-28T14:04:11Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum algorithms for quantum chemistry and quantum materials science [2.867517731896504]
We briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer.
We take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
arXiv Detail & Related papers (2020-01-10T22:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.