Projection-Based Constrained Policy Optimization
- URL: http://arxiv.org/abs/2010.03152v1
- Date: Wed, 7 Oct 2020 04:22:45 GMT
- Title: Projection-Based Constrained Policy Optimization
- Authors: Tsung-Yen Yang and Justinian Rosca and Karthik Narasimhan and Peter J.
Ramadge
- Abstract summary: We propose a new algorithm, Projection-Based Constrained Policy Optimization (PCPO)
PCPO achieves more than 3.5 times less constraint violation and around 15% higher reward compared to state-of-the-art methods.
- Score: 34.555500347840805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of learning control policies that optimize a reward
function while satisfying constraints due to considerations of safety,
fairness, or other costs. We propose a new algorithm, Projection-Based
Constrained Policy Optimization (PCPO). This is an iterative method for
optimizing policies in a two-step process: the first step performs a local
reward improvement update, while the second step reconciles any constraint
violation by projecting the policy back onto the constraint set. We
theoretically analyze PCPO and provide a lower bound on reward improvement, and
an upper bound on constraint violation, for each policy update. We further
characterize the convergence of PCPO based on two different metrics:
$\normltwo$ norm and Kullback-Leibler divergence. Our empirical results over
several control tasks demonstrate that PCPO achieves superior performance,
averaging more than 3.5 times less constraint violation and around 15\% higher
reward compared to state-of-the-art methods.
Related papers
- POTEC: Off-Policy Learning for Large Action Spaces via Two-Stage Policy
Decomposition [40.851324484481275]
We study off-policy learning of contextual bandit policies in large discrete action spaces.
We propose a novel two-stage algorithm, called Policy Optimization via Two-Stage Policy Decomposition.
We show that POTEC provides substantial improvements in OPL effectiveness particularly in large and structured action spaces.
arXiv Detail & Related papers (2024-02-09T03:01:13Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks [59.419152768018506]
We show that any optimal policy necessarily satisfies the k-SP constraint.
We propose a novel cost function that penalizes the policy violating SP constraint, instead of completely excluding it.
Our experiments on MiniGrid, DeepMind Lab, Atari, and Fetch show that the proposed method significantly improves proximal policy optimization (PPO)
arXiv Detail & Related papers (2021-07-13T21:39:21Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.