論文の概要: Interpreting Imagined Speech Waves with Machine Learning techniques
- arxiv url: http://arxiv.org/abs/2010.03360v2
- Date: Wed, 25 Nov 2020 15:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 00:35:10.137686
- Title: Interpreting Imagined Speech Waves with Machine Learning techniques
- Title(参考訳): 機械学習技術を用いた想像音声の解釈
- Authors: Abhiram Singh, Ashwin Gumaste
- Abstract要約: 本研究は,Human-Computer Interface (HCI) の新たな設計に使用可能なImagined Speech (IS)信号の復号化の可能性を探る。
脳波信号を生成するプロセスは未知であるため、様々な特徴抽出法と異なるニューラルネットワーク(NN)モデルを用いて、データの分布を近似し、IS信号を分類する。
- 参考スコア(独自算出の注目度): 1.776746672434207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work explores the possibility of decoding Imagined Speech (IS) signals
which can be used to create a new design of Human-Computer Interface (HCI).
Since the underlying process generating EEG signals is unknown, various feature
extraction methods, along with different neural network (NN) models, are used
to approximate data distribution and classify IS signals. Based on the
experimental results, feed-forward NN model with ensemble and covariance matrix
transformed features showed the highest performance in comparison to other
existing methods. For comparison, three publicly available datasets were used.
We report a mean classification accuracy of 80% between rest and imagined
state, 96% and 80% for decoding long and short words on two datasets. These
results show that it is possible to differentiate brain signals (generated
during rest state) from the IS brain signals. Based on the experimental
results, we suggest that the word length and complexity can be used to decode
IS signals with high accuracy, and a BCI system can be designed with IS signals
for computer interaction. These ideas, and results give direction for the
development of a commercial level IS based BCI system, which can be used for
human-computer interaction in daily life.
- Abstract(参考訳): 本研究は,Human-Computer Interface (HCI) の新たな設計に使用できるImagined Speech (IS)信号の復号化の可能性を検討する。
脳波信号を生成するプロセスは未知であるため、様々な特徴抽出法と異なるニューラルネットワーク(NN)モデルを用いて、データの分布を近似し、IS信号を分類する。
実験結果に基づき,アンサンブルと共分散行列変換を用いたフィードフォワードnnモデルが,他の既存手法と比較して高い性能を示した。
比較のために3つの公開データセットが使用された。
2つのデータセットで長文と短文をデコードする場合の平均分類精度は,restと想定された状態の間で80%,96%,80%であった。
これらの結果は、is脳信号と(静止状態中に発生する)脳信号とを区別できることを示している。
実験結果から,is信号の復号化には単語長と複雑さが有効であること,コンピュータインタラクションのためのis信号を用いたbciシステムの設計が可能であることを示唆する。
これらのアイデアと成果は、日常生活における人間とコンピュータの相互作用に使用できる商用レベルのbciシステムの開発に方向性を与えている。
関連論文リスト
- Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI [6.926908480247951]
大型脳モデル(LaBraM)と呼ばれる脳波の統一基盤モデルを提案する。
LaBraMは、EEG信号をEEGチャネルパッチにセグメント化することで、データセット間の学習を可能にする。
次に、マスクされたEEGチャネルパッチの元のニューラルコードを予測することにより、ニューラルトランスフォーマーを事前訓練する。
論文 参考訳(メタデータ) (2024-05-29T05:08:16Z) - Brain-Driven Representation Learning Based on Diffusion Model [25.375490061512]
本研究では,拡散確率モデル(DDPM)について検討した。
条件付きオートエンコーダとDDPMを併用することで、我々の新しいアプローチは従来の機械学習アルゴリズムよりもかなり優れています。
本研究は,音声関連脳波信号解析のための高度な計算手法として,DDPMの可能性を強調した。
論文 参考訳(メタデータ) (2023-11-14T05:59:58Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
本稿では,脳波以外の追加信号の利用の利便性について検討し,比較する。
最も優れたモデルである深部分離畳み込みニューラルネットワークのアンサンブルは86.06%の精度を達成した。
論文 参考訳(メタデータ) (2021-07-23T06:37:38Z) - A Deep Neural Network for SSVEP-based Brain-Computer Interfaces [3.0595138995552746]
脳-コンピュータインターフェース(BCI)のスペルのターゲット識別(英: Target Identification)とは、被験者がスペルを意図したターゲット特性を予測する脳波分類(EEG)を指す。
この設定では、ターゲット同定に対処し、新しいディープニューラルネットワーク(DNN)アーキテクチャを提案する。
提案したDNNは、マルチチャネルSSVEPを、ハーモニック、チャンネル、時間、および完全に接続された層で分類されたサブバンド間の畳み込みで処理する。
論文 参考訳(メタデータ) (2020-11-17T11:11:19Z) - A Novel Deep Learning Architecture for Decoding Imagined Speech from EEG [2.4063592468412267]
我々は、ディープニューラルネットワーク(DNN)を用いて、"in"と"cooperate"の単語を分類する新しいアーキテクチャを提案する。
9つの脳波チャンネルは、下層の皮質活動を最もよく捉え、共通空間パターンを用いて選択される。
我々は最先端の結果に匹敵する精度を達成した。
論文 参考訳(メタデータ) (2020-03-19T00:57:40Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z) - Classification of High-Dimensional Motor Imagery Tasks based on An
End-to-end role assigned convolutional neural network [21.984302611206537]
本稿では,各上肢領域の識別的特徴を考慮した終端から終端までの畳み込みニューラルネットワーク(ERA-CNN)を提案する。
ERA-CNNを用いて脳波信号のみを用いてユーザの意図を復号する可能性を実証する。
論文 参考訳(メタデータ) (2020-02-01T14:06:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。