論文の概要: Discriminative Cross-Modal Data Augmentation for Medical Imaging
Applications
- arxiv url: http://arxiv.org/abs/2010.03468v1
- Date: Wed, 7 Oct 2020 15:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 22:53:20.388493
- Title: Discriminative Cross-Modal Data Augmentation for Medical Imaging
Applications
- Title(参考訳): 医用画像のための識別的クロスモーダルデータ拡張
- Authors: Yue Yang, Pengtao Xie
- Abstract要約: 深層学習法は医用画像解析において大きな成功を収めており、訓練には多くの医用画像が必要である。
データプライバシの懸念と医療アノテータの有効性のため、モデルトレーニングのためにラベル付き医療画像を得るのは非常に困難であることが多い。
本稿では,画像のソースモダリティを目標モダリティに変換する画像対画像変換モデルを提案する。
- 参考スコア(独自算出の注目度): 24.06277026586584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep learning methods have shown great success in medical image
analysis, they require a number of medical images to train. Due to data privacy
concerns and unavailability of medical annotators, it is oftentimes very
difficult to obtain a lot of labeled medical images for model training. In this
paper, we study cross-modality data augmentation to mitigate the data
deficiency issue in the medical imaging domain. We propose a discriminative
unpaired image-to-image translation model which translates images in source
modality into images in target modality where the translation task is conducted
jointly with the downstream prediction task and the translation is guided by
the prediction. Experiments on two applications demonstrate the effectiveness
of our method.
- Abstract(参考訳): 深層学習は医用画像解析において大きな成功を収めてきたが、訓練には多くの医用画像が必要である。
データプライバシの懸念と医療アノテータの有効性のため、モデルトレーニングのためにラベル付き医療画像を得るのは非常に困難であることが多い。
本稿では,医療画像領域のデータ不足問題を軽減するために,クロスモダリティデータ拡張について検討する。
本稿では、画像のソースモダリティを目標モダリティに変換し、下流予測タスクと共同で翻訳タスクを行い、その予測によって翻訳を導出する識別的未ペア画像画像変換モデルを提案する。
2つの応用実験により,本手法の有効性が示された。
関連論文リスト
- LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
我々はUnified Medical Image Pre-Trainingフレームワーク(UniMedI)を提案する。
UniMedIは、診断レポートを一般的な意味空間として使用し、医療画像の多様なモダリティの統一表現を作成する。
10種類のデータセットにまたがる2次元画像と3次元画像の性能評価を行った。
論文 参考訳(メタデータ) (2023-11-24T22:01:12Z) - Unified Medical Image-Text-Label Contrastive Learning With Continuous
Prompt [3.218449686637963]
本稿では,連続的なプロンプトに基づく画像-テキスト-ラベルのコントラスト学習フレームワークを提案する。
我々は,Unified Medical Contrastive Learningフレームワークが下流のタスクに優れた性能を示すことを示す十分な実験を通して実証する。
論文 参考訳(メタデータ) (2023-07-12T05:19:10Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Contrastive Learning of Medical Visual Representations from Paired
Images and Text [38.91117443316013]
本研究では,自然発生した記述的ペアリングテキストを活用することで,医用視覚表現を学習するための教師なし戦略であるConVIRTを提案する。
この2つのモダリティ間の双方向のコントラスト的目的を通じて、ペア化されたテキストデータを用いて医療画像エンコーダを事前訓練する手法は、ドメインに依存しないため、追加の専門家による入力は不要である。
論文 参考訳(メタデータ) (2020-10-02T02:10:18Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Unified Representation Learning for Efficient Medical Image Analysis [0.623075162128532]
統一モダリティ特化特徴表現(UMS-Rep)を用いた医用画像解析のためのマルチタスクトレーニング手法を提案する。
提案手法は,計算資源の全体的な需要を減らし,タスクの一般化と性能の向上を図っている。
論文 参考訳(メタデータ) (2020-06-19T16:52:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。