TEILP: Time Prediction over Knowledge Graphs via Logical Reasoning
- URL: http://arxiv.org/abs/2312.15816v2
- Date: Mon, 29 Jan 2024 04:39:02 GMT
- Title: TEILP: Time Prediction over Knowledge Graphs via Logical Reasoning
- Authors: Siheng Xiong, Yuan Yang, Ali Payani, James C Kerce, Faramarz Fekri
- Abstract summary: We propose TEILP, a logical reasoning framework that naturally integrates temporal elements into knowledge graph predictions.
We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph.
Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction.
- Score: 14.480267340831542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional embedding-based models approach event time prediction in
temporal knowledge graphs (TKGs) as a ranking problem. However, they often fall
short in capturing essential temporal relationships such as order and distance.
In this paper, we propose TEILP, a logical reasoning framework that naturally
integrates such temporal elements into knowledge graph predictions. We first
convert TKGs into a temporal event knowledge graph (TEKG) which has a more
explicit representation of time in term of nodes of the graph. The TEKG equips
us to develop a differentiable random walk approach to time prediction.
Finally, we introduce conditional probability density functions, associated
with the logical rules involving the query interval, using which we arrive at
the time prediction. We compare TEILP with state-of-the-art methods on five
benchmark datasets. We show that our model achieves a significant improvement
over baselines while providing interpretable explanations. In particular, we
consider several scenarios where training samples are limited, event types are
imbalanced, and forecasting the time of future events based on only past events
is desired. In all these cases, TEILP outperforms state-of-the-art methods in
terms of robustness.
Related papers
- Selective Temporal Knowledge Graph Reasoning [70.11788354442218]
Temporal Knowledge Graph (TKG) aims to predict future facts based on given historical ones.
Existing TKG reasoning models are unable to abstain from predictions they are uncertain.
We propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions.
arXiv Detail & Related papers (2024-04-02T06:56:21Z) - Leveraging Pre-trained Language Models for Time Interval Prediction in
Text-Enhanced Temporal Knowledge Graphs [1.4916971861796382]
We propose a novel framework called TEMT that exploits the power of pre-trained language models (PLMs) for text-enhanced temporal knowledge graph completion.
Unlike previous approaches, TEMT effectively captures dependencies across different time points and enables predictions on unseen entities.
arXiv Detail & Related papers (2023-09-28T11:43:49Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - NeuSTIP: A Novel Neuro-Symbolic Model for Link and Time Prediction in
Temporal Knowledge Graphs [13.442923127130806]
We propose a novel temporal neuro-symbolic model, NeuSTIP, that performs link prediction and time interval prediction in a temporal knowledge graph.
NeuSTIP learns temporal rules in the presence of the Allen predicates that ensure the temporal consistency between neighboring predicates.
Our empirical evaluation on two time interval based datasets suggests that our model outperforms state-of-the-art models for both link prediction and the time interval prediction task.
arXiv Detail & Related papers (2023-05-15T13:46:34Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
We introduce a novel task named TODAY that bridges the gap with temporal differential analysis.
TODAY evaluates whether systems can correctly understand the effect of incremental changes.
We show that TODAY's supervision style and explanation annotations can be used in joint learning.
arXiv Detail & Related papers (2022-12-20T17:40:03Z) - Logic and Commonsense-Guided Temporal Knowledge Graph Completion [9.868206060374991]
A temporal knowledge graph (TKG) stores the events derived from the data involving time.
We propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events.
arXiv Detail & Related papers (2022-11-30T10:06:55Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - TLogic: Temporal Logical Rules for Explainable Link Forecasting on
Temporal Knowledge Graphs [13.085620598065747]
In temporal knowledge graphs, time information is integrated into the graph by equipping each edge with a timestamp or a time range.
We introduce TLogic, an explainable framework that is based on temporal logical rules extracted via temporal random walks.
arXiv Detail & Related papers (2021-12-15T10:46:35Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion [45.588053447288566]
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task.
We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques.
arXiv Detail & Related papers (2020-10-07T17:11:53Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.