History repeats Itself: A Baseline for Temporal Knowledge Graph Forecasting
- URL: http://arxiv.org/abs/2404.16726v2
- Date: Mon, 29 Apr 2024 22:50:42 GMT
- Title: History repeats Itself: A Baseline for Temporal Knowledge Graph Forecasting
- Authors: Julia Gastinger, Christian Meilicke, Federico Errica, Timo Sztyler, Anett Schuelke, Heiner Stuckenschmidt,
- Abstract summary: Temporal Knowledge Graph (TKG) Forecasting aims at predicting links in Knowledge Graphs for future timesteps based on a history of Knowledge Graphs.
We propose to design an intuitive baseline for TKG Forecasting based on predicting recurring facts.
- Score: 10.396081172890025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal Knowledge Graph (TKG) Forecasting aims at predicting links in Knowledge Graphs for future timesteps based on a history of Knowledge Graphs. To this day, standardized evaluation protocols and rigorous comparison across TKG models are available, but the importance of simple baselines is often neglected in the evaluation, which prevents researchers from discerning actual and fictitious progress. We propose to close this gap by designing an intuitive baseline for TKG Forecasting based on predicting recurring facts. Compared to most TKG models, it requires little hyperparameter tuning and no iterative training. Further, it can help to identify failure modes in existing approaches. The empirical findings are quite unexpected: compared to 11 methods on five datasets, our baseline ranks first or third in three of them, painting a radically different picture of the predictive quality of the state of the art.
Related papers
- TEILP: Time Prediction over Knowledge Graphs via Logical Reasoning [14.480267340831542]
We propose TEILP, a logical reasoning framework that naturally integrates temporal elements into knowledge graph predictions.
We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph.
Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction.
arXiv Detail & Related papers (2023-12-25T21:54:56Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
We propose a few-shot out-of-graph (OOG) link prediction task for temporal knowledge graphs (TKGs)
We predict the missing entities from the links concerning unseen entities by employing a meta-learning framework.
Our model achieves superior performance on all three datasets.
arXiv Detail & Related papers (2022-11-15T14:23:07Z) - TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph
Forecasting [12.963769928056253]
We propose the first reinforcement learning method for forecasting. Specifically, the agent travels on historical knowledge graph snapshots to search for the answer.
Our method defines a relative time encoding function to capture the timespan information, and we design a novel time-shaped reward based on Dirichlet distribution to guide the model learning.
We evaluate our method for this link prediction task at future timestamps.
arXiv Detail & Related papers (2021-09-09T08:41:01Z) - Spatio-Temporal Graph Contrastive Learning [49.132528449909316]
We propose a Spatio-Temporal Graph Contrastive Learning framework (STGCL) to tackle these issues.
We elaborate on four types of data augmentations which disturb data in terms of graph structure, time domain, and frequency domain.
Our framework is evaluated across three real-world datasets and four state-of-the-art models.
arXiv Detail & Related papers (2021-08-26T16:05:32Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
We study a spectrum of models derived by generalizing the current state of the art for few-shot link prediction.
We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance.
Experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information.
arXiv Detail & Related papers (2021-02-05T21:04:31Z) - TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion [45.588053447288566]
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task.
We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques.
arXiv Detail & Related papers (2020-10-07T17:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.