Quantum-enhanced barcode decoding and pattern recognition
- URL: http://arxiv.org/abs/2010.03594v2
- Date: Wed, 9 Dec 2020 07:40:30 GMT
- Title: Quantum-enhanced barcode decoding and pattern recognition
- Authors: Leonardo Banchi, Quntao Zhuang, Stefano Pirandola
- Abstract summary: We show that the use of quantum entangled sources, combined with suitable measurements and data processing, greatly outperforms classical coherent-state strategies for the tasks of barcode data decoding and classification of black and white patterns.
We theoretically demonstrate the advantage of using quantum sensors for pattern recognition with the nearest neighbor, a supervised learning algorithm, and numerically verify this prediction for handwritten digit classification.
- Score: 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum hypothesis testing is one of the most fundamental problems in quantum
information theory, with crucial implications in areas like quantum sensing,
where it has been used to prove quantum advantage in a series of binary
photonic protocols, e.g., for target detection or memory cell readout. In this
work, we generalize this theoretical model to the multi-partite setting of
barcode decoding and pattern recognition. We start by defining a digital image
as an array or grid of pixels, each pixel corresponding to an ensemble of
quantum channels. Specializing each pixel to a black and white alphabet, we
naturally define an optical model of barcode. In this scenario, we show that
the use of quantum entangled sources, combined with suitable measurements and
data processing, greatly outperforms classical coherent-state strategies for
the tasks of barcode data decoding and classification of black and white
patterns. Moreover, introducing relevant bounds, we show that the problem of
pattern recognition is significantly simpler than barcode decoding, as long as
the minimum Hamming distance between images from different classes is large
enough. Finally, we theoretically demonstrate the advantage of using quantum
sensors for pattern recognition with the nearest neighbor classifier, a
supervised learning algorithm, and numerically verify this prediction for
handwritten digit classification.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Sparse Coding and Decoding Based on Quantum Network [1.0683439960798695]
We propose a symmetric quantum neural network for realizing sparse coding and decoding algorithms.
Our networks consist of multi-layer, two-level unitary transformations that are naturally suited for optical circuits.
We achieve sparse coding and decoding of binary and grayscale images in classical problems, as well as that of complex quantum states in quantum problems separately.
arXiv Detail & Related papers (2024-06-10T04:21:27Z) - Digital-analog quantum convolutional neural networks for image classification [3.7691369315275693]
We consider multipartite-entangled analog blocks, stemming from native Ising interactions in neutral-atom quantum processors.
We apply multiple quantum kernels by varying the qubit connectivity according to the hardware constraints.
An architecture that combines non-trainable quantum kernels and standard convolutional neural networks is used to classify realistic medical images.
arXiv Detail & Related papers (2024-05-01T14:43:20Z) - Tensor Network Based Efficient Quantum Data Loading of Images [0.0]
We present a novel method for creating quantum states that approximately encode images as amplitudes.
We experimentally demonstrate our technique on 8 qubits of a trapped ion quantum computer for complex images of road scenes.
arXiv Detail & Related papers (2023-10-09T17:40:41Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - Quantum Face Recognition Protocol with Ghost Imaging [1.4856165761750735]
We propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis (QPCA)
A novel quantum algorithm for finding dissimilarity in the faces based on the determinant of trace and computation of a matrix (image) is also proposed.
Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system.
arXiv Detail & Related papers (2021-10-19T16:31:46Z) - Fock State-enhanced Expressivity of Quantum Machine Learning Models [0.0]
photonic-based bosonic data-encoding scheme embeds classical data points using fewer encoding layers.
We propose three different noisy intermediate-scale quantum-compatible binary classification methods with different scaling of required resources.
arXiv Detail & Related papers (2021-07-12T07:07:39Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.