Quantum Sparse Coding and Decoding Based on Quantum Network
- URL: http://arxiv.org/abs/2406.06012v1
- Date: Mon, 10 Jun 2024 04:21:27 GMT
- Title: Quantum Sparse Coding and Decoding Based on Quantum Network
- Authors: Xun Ji, Qin Liu, Shang Huang, Andi Chen, Shengjun Wu,
- Abstract summary: We propose a symmetric quantum neural network for realizing sparse coding and decoding algorithms.
Our networks consist of multi-layer, two-level unitary transformations that are naturally suited for optical circuits.
We achieve sparse coding and decoding of binary and grayscale images in classical problems, as well as that of complex quantum states in quantum problems separately.
- Score: 1.0683439960798695
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sparse coding provides a versatile framework for efficiently capturing and representing crucial data (information) concisely, which plays an essential role in various computer science fields, including data compression, feature extraction, and general signal processing. In this study, we propose a symmetric quantum neural network for realizing sparse coding and decoding algorithms. Our networks consist of multi-layer, two-level unitary transformations that are naturally suited for optical circuits. Each gate is described by two real parameters, corresponding to reflectivity and phase shift. Specifically, the two networks can be efficiently trained together or separately using a quantum natural gradient descent algorithm, either simultaneously or independently. Utilizing the trained model, we achieve sparse coding and decoding of binary and grayscale images in classical problems, as well as that of complex quantum states in quantum problems separately. The results demonstrate an accuracy of 98.77\% for image reconstruction and a fidelity of 97.68\% for quantum state revivification. Our quantum sparse coding and decoding model offers improved generalization and robustness compared to the classical model, laying the groundwork for widespread practical applications in the emerging quantum era.
Related papers
- Integrated Encoding and Quantization to Enhance Quanvolutional Neural Networks [2.789685107745028]
We propose two ways to enhance the efficiency of quanvolutional models.
First, we propose a flexible data quantization approach with memoization, applicable to any encoding method.
Second, we introduce a new integrated encoding strategy, which combines the encoding and processing steps in a single circuit.
arXiv Detail & Related papers (2024-10-08T07:57:13Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.