A Unified Combination of Classical and Quantum Systems
- URL: http://arxiv.org/abs/2010.03984v2
- Date: Mon, 12 Oct 2020 16:36:22 GMT
- Title: A Unified Combination of Classical and Quantum Systems
- Authors: John R. Klauder
- Abstract summary: We show how to overcome the two separate languages of classical and quantum systems.
Our presentation begins with familiar methods that are limited to basic, conventional, canonical quantum mechanical examples.
In the final sections we illustrate how alternative quantization procedures, e.g., spin and affine quantizations, can also have smooth paths between classical and quantum stories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Any particular classical system and its quantum version are normally viewed
as separate formulations that are strictly distinct. Our goal is to overcome
the two separate languages and create a smooth and common procedure that
provides a clear and continuous passage between the conventional distinction of
either a strictly classical or a strictly quantized state. While path
integration, among other procedures, provides an alternative route to connect
classical and quantum expressions, it normally involves complicated,
model-dependent, integrations. Our alternative procedures involve only
model-independent procedures, and use more natural and straightforward
integrations that are universal in kind. To introduce the basic procedures our
presentation begins with familiar methods that are limited to basic,
conventional, canonical quantum mechanical examples. In the final sections we
illustrate how alternative quantization procedures, e.g., spin and affine
quantizations, can also have smooth paths between classical and quantum
stories, and with a few brief remarks, can also lead to similar stories for
non-renormalizable covariant scalar fields as well as quantum gravity.
Related papers
- Reassessing the boundary between classical and nonclassicalfor individual quantum processes [9.7383000873479]
We show that this notion can be leveraged to define a classical-nonclassical divide for individual quantum processes of arbitrary type.
We begin the task of characterizing where the classical-nonclassical divide lies according to this proposal for a variety of different types of processes.
arXiv Detail & Related papers (2025-03-07T19:09:45Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Path integrals for classical-quantum dynamics [0.0]
Consistent dynamics which couples classical and quantum degrees of freedom exists.
We derive a general path integral representation for such dynamics in terms of a classical-quantum action.
When the classical-quantum Hamiltonian is at most quadratic in the momenta we are able to derive a configuration space path integral.
arXiv Detail & Related papers (2023-01-11T19:03:26Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum-Classical Hybrid Systems and their Quasifree Transformations [0.0]
We study continuous variable systems in which quantum and classical degrees of freedom are combined and treated on the same footing.
This allows a unified treatment of a large variety of quantum operations involving measurements or dependence on classical parameters.
arXiv Detail & Related papers (2022-08-09T19:51:10Z) - Connecting Commutativity and Classicality for Multi-Time Quantum
Processes [0.0]
We focus on the relationship between Kolmogorov consistency of measurement statistics and the commutativity of measurement operators.
On the other hand, commutativity of measurement operators is a structural property that holds in classical physics.
We detail their implications for memoryless multi-time quantum processes.
arXiv Detail & Related papers (2022-04-25T14:41:08Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Quantum collision models: open system dynamics from repeated
interactions [1.5293427903448022]
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes.
This article could be seen as an introduction to fundamentals of open quantum systems theory since most main concepts of this are treated such as quantum maps, Lindblad master equation, steady states, POVMs, quantum trajectories and Schrodinger equation.
arXiv Detail & Related papers (2021-06-22T18:00:01Z) - Quantum chaos in the spin coherent state representation [0.0]
We use spin coherent states to compare classical and quantum evolution of a simple paradigmatic, discrete-time quantum dynamical system.
In the paper, we presented a different way by comparing evolution of appropriately defined moments of classical and quantum distributions.
arXiv Detail & Related papers (2020-10-27T15:04:40Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.