論文の概要: Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study
- arxiv url: http://arxiv.org/abs/2010.04049v1
- Date: Thu, 8 Oct 2020 15:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 12:00:01.392216
- Title: Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study
- Title(参考訳): 肺病変の階層的分類 : 大規模ラジオパトミクスによる検討
- Authors: Jiancheng Yang, Mingze Gao, Kaiming Kuang, Bingbing Ni, Yunlang She,
Dong Xie, Chang Chen
- Abstract要約: CTによる肺病変の診断は重要であるが,肺癌関連疾患の臨床的判断には困難である。
深層学習は肺がんに対するコンピュータ支援診断 (CADx) 領域において大きな成功を収めているが, 放射線診断の困難さからラベルの曖昧さに悩まされている。
本研究は, 侵襲的病理解析が肺がん診断の黄金基準となっていることを考慮し, 大規模放射線病的データセットを用いてラベルあいまいさを解消する。
この振り返りデータセットはPentral-RadPathと呼ばれ、高精度なディープラーニングシステムの開発と検証により、非侵襲的な病理組織ラベルを予測できる。
- 参考スコア(独自算出の注目度): 38.78350161086617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnosis of pulmonary lesions from computed tomography (CT) is important but
challenging for clinical decision making in lung cancer related diseases. Deep
learning has achieved great success in computer aided diagnosis (CADx) area for
lung cancer, whereas it suffers from label ambiguity due to the difficulty in
the radiological diagnosis. Considering that invasive pathological analysis
serves as the clinical golden standard of lung cancer diagnosis, in this study,
we solve the label ambiguity issue via a large-scale radio-pathomics dataset
containing 5,134 radiological CT images with pathologically confirmed labels,
including cancers (e.g., invasive/non-invasive adenocarcinoma, squamous
carcinoma) and non-cancer diseases (e.g., tuberculosis, hamartoma). This
retrospective dataset, named Pulmonary-RadPath, enables development and
validation of accurate deep learning systems to predict invasive pathological
labels with a non-invasive procedure, i.e., radiological CT scans. A
three-level hierarchical classification system for pulmonary lesions is
developed, which covers most diseases in cancer-related diagnosis. We explore
several techniques for hierarchical classification on this dataset, and propose
a Leaky Dense Hierarchy approach with proven effectiveness in experiments. Our
study significantly outperforms prior arts in terms of data scales (6x larger),
disease comprehensiveness and hierarchies. The promising results suggest the
potentials to facilitate precision medicine.
- Abstract(参考訳): CTによる肺病変の診断は重要であるが,肺癌関連疾患の臨床的判断には困難である。
深層学習は肺がんに対するコンピュータ支援診断 (CADx) 領域において大きな成功を収めているが, 放射線診断の困難さからラベルの曖昧さに悩まされている。
本研究は, 浸潤性病理検査が肺がん診断の黄金基準となることを考えると, 癌(浸潤性非浸潤性腺癌, 扁平上皮癌) および非癌性疾患(結核, 悪性腫瘍など)を含む, 病理組織学的CT画像5,134枚を含む大規模放射線病的データセットを用いて, ラベルの曖昧さを解消する。
この振り返りデータセットはPald-RadPathと呼ばれ、正確な深層学習システムの開発と検証により、非侵襲的CTスキャンを用いて侵襲的な病理組織ラベルを予測できる。
がん関連診断のほとんどの疾患をカバーする3段階の肺病変分類システムを開発した。
本稿では,このデータセット上で階層分類を行ういくつかの手法について検討し,実験の有効性を実証したLeaky Dense Hierarchyアプローチを提案する。
私たちの研究は、データスケール(6倍)、疾患の包括性、階層性の点で、先行技術を大きく上回っている。
有望な結果は、精密医療を促進する可能性を示唆している。
関連論文リスト
- Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
肺がんは世界中で致死率と死亡率の主要な原因の1つである。
コンピュータ支援診断システム(CAD)は肺結節の検出と分類に有効であることが証明されている。
深層学習アルゴリズムは肺結節解析の精度と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-10-18T17:45:42Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
本研究は,医療診断用データセットと信頼性ツールを提供することにより,このギャップを埋めることを目的としている。
330個の注記結節(結節は束縛箱とラベル付けされている)を95名の別患者から抽出し,CT画像の多彩なデータセットを収集した。
これらの有望な結果は、データセットが実現可能であり、さらにインテリジェントな補助診断を容易にすることを証明している。
論文 参考訳(メタデータ) (2024-06-26T06:39:11Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
我々はCXRレポートから病気ラベルを再抽出し,重症度と分類の不確実性を考慮し,より現実的になるようにした。
以上の結果から, 疾患の重症度と不確実性を考慮したモデルが, 従来の最先端手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-09-06T19:19:41Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule
Diagnosis [20.510918720980467]
肺がんは世界で最も死亡率が高い。
結節検出・診断において,放射線科医を支援するコンピュータ支援診断システム(CAD)が開発された。
モデル信頼性の欠如と解釈可能性の欠如は、その大規模臨床応用の大きな障害である。
論文 参考訳(メタデータ) (2022-04-08T08:21:00Z) - A Precision Diagnostic Framework of Renal Cell Carcinoma on Whole-Slide
Images using Deep Learning [4.823436898659051]
深層畳み込みニューラルネットワーク(InceptionV3)は、The Cancer Genome Atlasの高品質な注釈付きデータセットに基づいて訓練された。
我々の枠組みは、がん領域の検出や、どのがんタイプにも適用可能なサブタイプやグレードの分類において、病理学者に役立てることができる。
論文 参考訳(メタデータ) (2021-10-26T12:53:25Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
肺がんは世界中でがんの死因となっている。
深層学習技術は肺がんの診断に有効である。
これらの技術は、まだ医療コミュニティによって承認され、採用されていない。
論文 参考訳(メタデータ) (2020-12-10T04:11:59Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
本研究は,腹部CTで膵神経内分泌腫瘍(PNET)を早期に検出するための包括的結果を提示する。
我々の知る限りでは、このタスクは以前まで計算タスクとして研究されていなかった。
我々の手法は最先端のセグメンテーションネットワークより優れ、感度は89.47%、特異性は81.08%である。
論文 参考訳(メタデータ) (2020-04-04T21:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。