論文の概要: Automatic generation of reviews of scientific papers
- arxiv url: http://arxiv.org/abs/2010.04147v1
- Date: Thu, 8 Oct 2020 17:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 12:43:29.292741
- Title: Automatic generation of reviews of scientific papers
- Title(参考訳): 論文レビューの自動生成
- Authors: Anna Nikiforovskaya, Nikolai Kapralov, Anna Vlasova, Oleg Shpynov and
Aleksei Shpilman
- Abstract要約: 本稿では,ユーザ定義クエリに対応するレビューペーパーの自動生成手法を提案する。
第1部では、共引用グラフなどの文献パラメータによって、この領域における重要な論文を識別する。
第2段階では、BERTベースのアーキテクチャを使用して、これらの重要な論文の抽出要約のために既存のレビューをトレーニングします。
- 参考スコア(独自算出の注目度): 1.1999555634662633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With an ever-increasing number of scientific papers published each year, it
becomes more difficult for researchers to explore a field that they are not
closely familiar with already. This greatly inhibits the potential for
cross-disciplinary research. A traditional introduction into an area may come
in the form of a review paper. However, not all areas and sub-areas have a
current review. In this paper, we present a method for the automatic generation
of a review paper corresponding to a user-defined query. This method consists
of two main parts. The first part identifies key papers in the area by their
bibliometric parameters, such as a graph of co-citations. The second stage uses
a BERT based architecture that we train on existing reviews for extractive
summarization of these key papers. We describe the general pipeline of our
method and some implementation details and present both automatic and expert
evaluations on the PubMed dataset.
- Abstract(参考訳): 毎年多くの科学論文が発行されてきているため、研究者が既に親しんでいない分野を探索することが難しくなっている。
これは学際的な研究の可能性を大きく阻害する。
地域への伝統的な導入は、レビューペーパーの形で行われることもある。
しかし、すべての地域とサブエリアが現在のレビューを持っているわけではない。
本稿では,ユーザ定義クエリに対応するレビュー用紙の自動生成手法を提案する。
この方法は2つの主要な部分から構成される。
第1部では、共引用グラフなどの文献パラメータによって、この分野の重要論文を識別する。
第2段階では、BERTベースのアーキテクチャを使用して、これらの重要な論文の抽出要約のために既存のレビューをトレーニングします。
本稿では,提案手法の一般的なパイプラインと実装の詳細を説明し,pubmedデータセット上での自動評価とエキスパート評価の両方を示す。
関連論文リスト
- RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Named Entity Recognition Based Automatic Generation of Research
Highlights [3.9410617513331863]
我々は,研究論文の異なるセクションを入力として,研究ハイライトを自動的に生成することを目指している。
入力に名前付きエンティティ認識を用いることで、生成したハイライトの品質が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-02-25T16:33:03Z) - Cracking Double-Blind Review: Authorship Attribution with Deep Learning [43.483063713471935]
本稿では、匿名の原稿を著者に属性付けるトランスフォーマーベースのニューラルネットワークアーキテクチャを提案する。
我々は、arXivで公開されているすべての研究論文を200万冊以上の原稿に活用する。
本手法は, 論文の最大73%を正解する, 前代未聞の著者帰属精度を実現する。
論文 参考訳(メタデータ) (2022-11-14T15:50:24Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
本稿では,ユーザによって割り当てられたソーシャルタグに基づいて,研究論文の深い意味表現を活用するハイブリッドアプローチを提案する。
提案手法は,評価データが極めて少ない場合でも研究論文の推薦に有効である。
論文 参考訳(メタデータ) (2022-09-08T09:13:07Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
本稿では,論文のコントリビューションと作業状況について,個別の要約を生成するために,論文要約のアンタングル化という新たなタスクを導入する。
本稿では,学術論文のS2ORCコーパスを拡張し,コントリビューション・コントリビューション・コントリビューション・レファレンス・ラベルを付加する。
本稿では, 生成した出力の関連性, 新規性, 絡み合いを報告する総合的自動評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-06T02:23:01Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Machine Identification of High Impact Research through Text and Image
Analysis [0.4737991126491218]
本稿では,引用の可能性が低い論文から高い論文を自動的に分離するシステムを提案する。
本システムでは,文書全体の外観を推測する視覚的分類器と,コンテンツインフォームド決定のためのテキスト分類器の両方を用いる。
論文 参考訳(メタデータ) (2020-05-20T19:12:24Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
テキスト要約は、原文書の短く凝縮した版を作成することを目的とした研究分野である。
現実世界のアプリケーションでは、ほとんどのデータは平易なテキスト形式ではない。
本稿では,現実のアプリケーションにおけるこれらの新しい要約タスクとアプローチについて調査する。
論文 参考訳(メタデータ) (2020-05-10T14:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。