論文の概要: A deep learning based interactive sketching system for fashion images
design
- arxiv url: http://arxiv.org/abs/2010.04413v1
- Date: Fri, 9 Oct 2020 07:50:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 05:50:26.441895
- Title: A deep learning based interactive sketching system for fashion images
design
- Title(参考訳): ファッション画像設計のためのディープラーニングに基づくインタラクティブスケッチシステム
- Authors: Yao Li, Xianggang Yu, Xiaoguang Han, Nianjuan Jiang, Kui Jia, Jiangbo
Lu
- Abstract要約: ファッションスケッチとテクスチャ情報から,多様な高品質な衣料品画像をデザインするインタラクティブシステムを提案する。
このシステムの背後にある大きな課題は、ユーザが提供するテクスチャ情報に基づいて高品質で詳細なテクスチャを生成することである。
特に、テクスチャ化された衣料画像を合成する新しい二色エッジテクスチャ表現と、グレースケールエッジに基づいてシェーディングをレンダリングするシェーディングエンハンサーを提案する。
- 参考スコア(独自算出の注目度): 47.09122395308728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an interactive system to design diverse high-quality
garment images from fashion sketches and the texture information. The major
challenge behind this system is to generate high-quality and detailed texture
according to the user-provided texture information. Prior works mainly use the
texture patch representation and try to map a small texture patch to a whole
garment image, hence unable to generate high-quality details. In contrast,
inspired by intrinsic image decomposition, we decompose this task into texture
synthesis and shading enhancement. In particular, we propose a novel bi-colored
edge texture representation to synthesize textured garment images and a shading
enhancer to render shading based on the grayscale edges. The bi-colored edge
representation provides simple but effective texture cues and color
constraints, so that the details can be better reconstructed. Moreover, with
the rendered shading, the synthesized garment image becomes more vivid.
- Abstract(参考訳): 本研究では,ファッションスケッチとテクスチャ情報から,多様な高品質な衣料品のイメージをデザインするインタラクティブシステムを提案する。
このシステムの主な課題は、ユーザが提供するテクスチャ情報に従って、高品質で詳細なテクスチャを生成することである。
以前はテクスチャパッチの表現を主に使用し、小さなテクスチャパッチを衣服全体のイメージにマッピングしようとしていたため、高品質な詳細を生成できなかった。
対照的に、本質的な画像分解に触発されて、このタスクをテクスチャ合成とシェーディング強化に分解する。
特に、テクスチャ化された衣料画像を合成する新しい二色エッジテクスチャ表現と、グレースケールエッジに基づいてシェーディングをレンダリングするシェーディングエンハンサーを提案する。
両色のエッジ表現は、シンプルだが効果的なテクスチャキューと色制約を提供しており、詳細をよりよく再構築することができる。
さらに、レンダリングシェーディングにより、合成された衣服画像がより鮮明になる。
関連論文リスト
- FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Clothing Images [56.63824638417697]
ファブリックディフュージョン(FabricDiffusion)は、織物のテクスチャを1枚の衣服画像から任意の形状の3D衣服に転送する方法である。
FabricDiffusionは、テクスチャパターン、材料特性、詳細な印刷物やロゴを含む、単一の衣料品画像から様々な特徴を伝達できることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:12Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
Infinite Textureはテキストプロンプトから任意の大きさのテクスチャ画像を生成する方法である。
本手法は,1つのテクスチャ上に拡散モデルを微調整し,その分布をモデルの出力領域に埋め込むことを学習する。
1つのGPU上で任意の解像度の出力テクスチャ画像を生成するためのスコアアグリゲーションストラテジーによって、我々の微調整拡散モデルが生成される。
論文 参考訳(メタデータ) (2024-05-13T21:53:09Z) - Compositional Neural Textures [25.885557234297835]
この研究は、合成ニューラルモデルを用いてテクスチャを表現するための、完全に教師なしのアプローチを導入する。
我々は,各テキストを,空間的支持がその形状を近似する2次元ガウス関数と,その詳細な外観を符号化する関連する特徴として表現する。
このアプローチは、画像テクスチャから他のイメージへの外観の移動、テクスチャの多様化、テクスチャのバリエーションの明示/修正、編集の伝播、テクスチャアニメーション、ダイレクトテキスト操作など、幅広いアプリケーションを可能にする。
論文 参考訳(メタデータ) (2024-04-18T21:09:34Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamerは画像誘導型テクスチャ合成法である。
少数の入力画像から任意のカテゴリでターゲットの3D形状に光沢のあるテクスチャを転送することができる。
論文 参考訳(メタデータ) (2024-01-17T18:55:49Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - Color and Texture Dual Pipeline Lightweight Style Transfer [1.1863107884314108]
スタイル伝達法は通常、参照スタイルのための色とテクスチャの結合の単一のスタイル化された出力を生成する。
色とテクスチャの転送結果の同時出力に2重パイプライン方式を用いるカラー・テクスチャ二重パイプライン方式のライトウェイト転送CTDP法を提案する。
比較実験では、CTDPが生成した色とテクスチャの伝達結果はどちらも最先端の性能を達成している。
論文 参考訳(メタデータ) (2023-10-02T16:29:49Z) - Texture Transform Attention for Realistic Image Inpainting [6.275013056564918]
本研究では,細心の注意を払って絵を描いていない領域をより良く生成するテクスチャトランスフォーメーション・アテンション・ネットワークを提案する。
Texture Transform Attentionは、細かいテクスチャと粗いセマンティクスを使用して、新しい再組み立てテクスチャマップを作成するために使用されます。
我々は,公開データセット celeba-hq と places2 を用いて,エンドツーエンドでモデルを評価する。
論文 参考訳(メタデータ) (2020-12-08T06:28:51Z) - Region-adaptive Texture Enhancement for Detailed Person Image Synthesis [86.69934638569815]
RATE-Netは、シャープなテクスチャで人物画像を合成するための新しいフレームワークである。
提案するフレームワークは,テクスチャ強化モジュールを利用して,画像から外観情報を抽出する。
DeepFashionベンチマークデータセットで実施された実験は、既存のネットワークと比較して、我々のフレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2020-05-26T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。