A theory of quantum subspace diagonalization
- URL: http://arxiv.org/abs/2110.07492v2
- Date: Tue, 13 Jun 2023 18:05:39 GMT
- Title: A theory of quantum subspace diagonalization
- Authors: Ethan N. Epperly, Lin Lin, Yuji Nakatsukasa
- Abstract summary: We show that a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix.
Our results can be of independent interest to solving eigenvalue problems outside the context of quantum computation.
- Score: 3.248953303528541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum subspace diagonalization methods are an exciting new class of
algorithms for solving large\rev{-}scale eigenvalue problems using quantum
computers. Unfortunately, these methods require the solution of an
ill-conditioned generalized eigenvalue problem, with a matrix pair corrupted by
a non-negligible amount of noise that is far above the machine precision.
Despite pessimistic predictions from classical \rev{worst-case} perturbation
theories, these methods can perform reliably well if the generalized eigenvalue
problem is solved using a standard truncation strategy. By leveraging and
advancing classical results in matrix perturbation theory, we provide a
theoretical analysis of this surprising phenomenon, proving that under certain
natural conditions, a quantum subspace diagonalization algorithm can accurately
compute the smallest eigenvalue of a large Hermitian matrix. We give numerical
experiments demonstrating the effectiveness of the theory and providing
practical guidance for the choice of truncation level. Our new results can also
be of independent interest to solving eigenvalue problems outside the context
of quantum computation.
Related papers
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - Tensor networks based quantum optimization algorithm [0.0]
In optimization, one of the well-known classical algorithms is power iterations.
We propose a quantum realiziation to circumvent this pitfall.
Our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.
arXiv Detail & Related papers (2024-04-23T13:49:11Z) - Using Variational Eigensolvers on Low-End Hardware to Find the Ground
State Energy of Simple Molecules [0.0]
Key properties of physical systems can be described by the eigenvalues of matrices that represent the system.
Computational algorithms that determine the eigenvalues of these matrices exist, but they generally suffer from a loss of performance as the matrix grows in size.
This process can be expanded to quantum computation to find the eigenvalues with better performance than the classical algorithms.
arXiv Detail & Related papers (2023-10-29T18:36:18Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Trimmed Sampling Algorithm for the Noisy Generalized Eigenvalue Problem [0.0]
Solving the generalized eigenvalue problem is a useful method for finding energy eigenstates of large quantum systems.
The problem is especially bad when matrix elements are evaluated using methods and have significant error bars.
We introduce the trimmed sampling algorithm in order to solve this problem.
arXiv Detail & Related papers (2022-09-05T18:10:12Z) - Quantum algorithms for the generalized eigenvalue problem [6.111964049119244]
generalized eigenvalue (GE) problems are of particular importance in various areas of science engineering and machine learning.
We present a variational quantum algorithm for finding the desired generalized eigenvalue of the GE problem, $mathcalA|psirangle=lambdamathcalB|psirangle$, by choosing suitable loss functions.
We numerically implement our algorithms to conduct a 2-qubit simulation and successfully find the generalized eigenvalues of the matrix pencil $(mathcalA,,mathcalB)$
arXiv Detail & Related papers (2021-12-05T12:12:49Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.