論文の概要: Interpretable Neural Networks for Panel Data Analysis in Economics
- arxiv url: http://arxiv.org/abs/2010.05311v3
- Date: Sun, 29 Nov 2020 14:57:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:49:41.541490
- Title: Interpretable Neural Networks for Panel Data Analysis in Economics
- Title(参考訳): 経済学におけるパネルデータ分析のための解釈可能なニューラルネットワーク
- Authors: Yucheng Yang, Zhong Zheng, Weinan E
- Abstract要約: 本稿では,高い予測精度と解釈可能性の両方を達成可能な,解釈可能なニューラルネットワークモデルのクラスを提案する。
高次元の行政データを用いて、個人の月間雇用状況を予測するモデルを適用した。
テストセットの精度は94.5%で、従来の機械学習手法に匹敵する。
- 参考スコア(独自算出の注目度): 10.57079240576682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of interpretability and transparency are preventing economists from
using advanced tools like neural networks in their empirical research. In this
paper, we propose a class of interpretable neural network models that can
achieve both high prediction accuracy and interpretability. The model can be
written as a simple function of a regularized number of interpretable features,
which are outcomes of interpretable functions encoded in the neural network.
Researchers can design different forms of interpretable functions based on the
nature of their tasks. In particular, we encode a class of interpretable
functions named persistent change filters in the neural network to study time
series cross-sectional data. We apply the model to predicting individual's
monthly employment status using high-dimensional administrative data. We
achieve an accuracy of 94.5% in the test set, which is comparable to the best
performed conventional machine learning methods. Furthermore, the
interpretability of the model allows us to understand the mechanism that
underlies the prediction: an individual's employment status is closely related
to whether she pays different types of insurances. Our work is a useful step
towards overcoming the black-box problem of neural networks, and provide a new
tool for economists to study administrative and proprietary big data.
- Abstract(参考訳): 解釈可能性や透明性の欠如は、経済学者がニューラルネットワークのような高度なツールを経験的な研究で使うのを妨げている。
本稿では,高い予測精度と解釈可能性の両立が可能な,解釈可能なニューラルネットワークモデルを提案する。
このモデルは、ニューラルネットワークでエンコードされた解釈可能な関数の結果である、規則化された多数の解釈可能な特徴の単純な関数として書くことができる。
研究者はタスクの性質に基づいて様々な形の解釈可能な関数を設計できる。
特に,ニューラルネットワークにおける永続的変化フィルタと呼ばれる解釈可能な関数のクラスを符号化し,時系列横断データを調べる。
高次元の行政データを用いて、個人の月間雇用状況を予測するモデルを適用した。
テストセットの精度は94.5%で、従来の機械学習手法に匹敵する。
さらに、モデルの解釈可能性により、予測の根底にあるメカニズムを理解できるようになる:個人の雇用状況は、彼女が異なるタイプの保険を支払うかどうかに密接に関連している。
我々の研究は、ニューラルネットワークのブラックボックス問題を克服するための有用なステップであり、経済学者が管理的およびプロプライエタリなビッグデータを研究するための新しいツールを提供する。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - From Neurons to Neutrons: A Case Study in Interpretability [5.242869847419834]
高次元ニューラルネットワークはトレーニングデータの低次元表現を学習することができると我々は主張する。
このことは、解釈可能性に対するそのようなアプローチが、問題を解決するために訓練されたモデルから問題に対する新しい理解を導き出すのに有用であることを示している。
論文 参考訳(メタデータ) (2024-05-27T17:59:35Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
本研究では,空間的特徴の関数として空間的パターンと係数が変化するような説明的特徴に疎線形モデルに適合する新しい統計的推定器を開発する。
実データと合成データに関する広範な実験は、学習されたモデルは、非常に透明であり、通常のラッソよりもスペーサーであることを示している。
論文 参考訳(メタデータ) (2023-02-02T05:00:29Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - A Theoretical Analysis on Feature Learning in Neural Networks: Emergence
from Inputs and Advantage over Fixed Features [18.321479102352875]
ニューラルネットワークの重要な特徴は、予測に有効な特徴を持つ入力データの表現を学ぶ能力である。
実践的なデータによって動機づけられた学習問題を考察し、そこでは、ラベルが一連のクラス関連パターンによって決定され、それらから入力が生成される。
勾配降下によって訓練されたニューラルネットワークがこれらの問題に成功できることを実証する。
論文 参考訳(メタデータ) (2022-06-03T17:49:38Z) - Convolutional Motif Kernel Networks [1.104960878651584]
我々のモデルは、小さなデータセットでしっかりと学習でき、関連する医療予測タスクで最先端のパフォーマンスを達成できることを示す。
提案手法はDNAおよびタンパク質配列に利用することができる。
論文 参考訳(メタデータ) (2021-11-03T15:06:09Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Consistent feature selection for neural networks via Adaptive Group
Lasso [3.42658286826597]
ニューラルネットワークの重要な特徴を選択するための適応型グループの使用に関する理論的保証を提案し,確立する。
具体的には,1つの隠蔽層と双曲的タンジェント活性化関数を持つ単一出力フィードフォワードニューラルネットワークに対して,特徴選択法が整合であることを示す。
論文 参考訳(メタデータ) (2020-05-30T18:50:56Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。