論文の概要: InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative
Tweet Extraction
- arxiv url: http://arxiv.org/abs/2010.05327v1
- Date: Sun, 11 Oct 2020 19:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:58:38.746803
- Title: InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative
Tweet Extraction
- Title(参考訳): WNUT-2020 Task 2: Transformer-based Covid-19 Informative Tweet extract
- Authors: Hansi Hettiarachchi, Tharindu Ranasinghe
- Abstract要約: WNUT-2020 Task 2は、ノイズツイートからの情報的ツイートを認識するために編成された。
本稿では,変圧器を用いたタスク目的への取り組みについて述べる。
- 参考スコア(独自算出の注目度): 9.710464466895521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying informative tweets is an important step when building information
extraction systems based on social media. WNUT-2020 Task 2 was organised to
recognise informative tweets from noise tweets. In this paper, we present our
approach to tackle the task objective using transformers. Overall, our approach
achieves 10th place in the final rankings scoring 0.9004 F1 score for the test
set.
- Abstract(参考訳): ソーシャルメディアに基づく情報抽出システムを構築する上で,情報ツイートの特定は重要なステップである。
wnut-2020タスク2は、ノイズツイートからの情報ツイートを認識するために組織された。
本稿では,変圧器を用いたタスク目的への取り組みについて述べる。
総合的に,テストセットのスコアは0.9004 F1であり,最終ランキングでは10位となった。
関連論文リスト
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
論文 参考訳(メタデータ) (2024-04-30T17:06:20Z) - Exploring Meta Information for Audio-based Zero-shot Bird Classification [113.17261694996051]
本研究では,メタ情報を用いてゼロショット音声分類を改善する方法について検討する。
我々は,多種多様なメタデータが利用可能であることから,鳥種を例として用いている。
論文 参考訳(メタデータ) (2023-09-15T13:50:16Z) - Toward Efficient Language Model Pretraining and Downstream Adaptation
via Self-Evolution: A Case Study on SuperGLUE [203.65227947509933]
このレポートでは、スーパーGLUEのリーダーボードにJDExplore d-teamのVega v2を提出しました。
SuperGLUEは、広く使われている汎用言語理解評価(GLUE)ベンチマークよりも難易度が高く、8つの難しい言語理解タスクを含んでいる。
論文 参考訳(メタデータ) (2022-12-04T15:36:18Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
本稿では,WMT'22チャット翻訳タスクに対して,北京地東大学とWeChat AIを共同で提案する。
Transformerに基づいて、いくつかの有効な変種を適用します。
本システムでは,0.810と0.946のCOMETスコアを達成している。
論文 参考訳(メタデータ) (2022-11-28T02:35:04Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
我々は、ウルドゥー語に対する虐待と脅しの2つの共通タスクを提示する。
本研究では, (i) 乱用と非乱用というラベル付きツイートを含む手動注釈付きデータセットと, (ii) 脅威と非脅威の2つを提示する。
両方のサブタスクに対して、m-Bertベースのトランスモデルは最高の性能を示した。
論文 参考訳(メタデータ) (2022-07-14T07:38:13Z) - Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal
Misinformation [83.2079454464572]
本稿では,DARPAセマンティック・フォレスティクス(SemaFor)プログラムにおける画像テキスト不整合検出へのアプローチについて述べる。
Twitter-COMMsは大規模マルチモーダルデータセットで、884万のツイートが気候変動、新型コロナウイルス、軍用車両のトピックに関連する。
我々は、最先端のCLIPモデルに基づいて、自動生成されたランダムとハードのネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガ
論文 参考訳(メタデータ) (2021-12-16T03:37:20Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
本稿では,WNUT-2020 Task2 において,NIT_COVID-19 チームによって提出された WNUT-2020 Task2 における COVID-19 英語のつぶやきを識別するためのモデルを提案する。
共用タスクWNUT 2020 Task2のモデルによる性能はF1スコアの89.14%である。
論文 参考訳(メタデータ) (2020-11-11T05:20:39Z) - Detection of COVID-19 informative tweets using RoBERTa [5.564705758320338]
我々は,2020年のW-NUTワークショップの一環として,RoBERTaモデルを用いて,情報発信型Covid-19英語のつぶやきを検出する作業について紹介する。
F1スコアが0.89、リーダーボードが0.87である公開データセット上で、我々のモデルの有効性を示す。
論文 参考訳(メタデータ) (2020-10-21T18:43:13Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19
Information on the Twitter Social Network [2.7528170226206443]
本稿では,W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
我々は,様々な微調整技術を用いた COVID-Twitter-BERT (CT-BERT) に基づくトランスフォーマーモデルを用いた簡易かつ効果的なアプローチを提案する。
その結果、F1スコアの90.94%を達成し、このタスクのリーダーボードで3位となり、合計56チームが参加した。
論文 参考訳(メタデータ) (2020-09-07T08:20:31Z) - EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with
Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets [0.0]
WNUT Task 2: informationative COVID-19 English Tweets の同定を行う。
私たちの最も成功したモデルは、RoBERTa、XLNet、BERTweetといったトランスフォーマーのアンサンブルで、Semi-Supervised Learning (SSL)環境でトレーニングされています。
提案システムでは,テストセット上でのF1スコアが0.9011(リーダボードでは7位)に達し,FastText埋め込みを用いたシステムに比べて性能が大幅に向上した。
論文 参考訳(メタデータ) (2020-09-06T15:57:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。