論文の概要: A Knowledge-Driven Approach to Classifying Object and Attribute
Coreferences in Opinion Mining
- arxiv url: http://arxiv.org/abs/2010.05357v2
- Date: Sat, 17 Jul 2021 13:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:48:24.800994
- Title: A Knowledge-Driven Approach to Classifying Object and Attribute
Coreferences in Opinion Mining
- Title(参考訳): オピニオンマイニングにおけるオブジェクトと属性の一致を分類する知識駆動型アプローチ
- Authors: Jiahua Chen and Shuai Wang and Sahisnu Mazumder and Bing Liu
- Abstract要約: 本稿では,オブジェクトや属性のコア参照を分類するドメイン固有の知識を自動的にマイニングし,活用する手法を提案する。
このアプローチは、ラベルのないレビューデータからドメイン固有の知識を抽出し、知識認識型ニューラルネットワーク分類モデルを訓練する。
5つのドメイン(製品タイプ)を含む実世界のデータセットに関する実験的評価は、このアプローチの有効性を示している。
- 参考スコア(独自算出の注目度): 20.49474483102625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying and resolving coreferences of objects (e.g., product names) and
attributes (e.g., product aspects) in opinionated reviews is crucial for
improving the opinion mining performance. However, the task is challenging as
one often needs to consider domain-specific knowledge (e.g., iPad is a tablet
and has aspect resolution) to identify coreferences in opinionated reviews.
Also, compiling a handcrafted and curated domain-specific knowledge base for
each domain is very time consuming and arduous. This paper proposes an approach
to automatically mine and leverage domain-specific knowledge for classifying
objects and attribute coreferences. The approach extracts domain-specific
knowledge from unlabeled review data and trains a knowledgeaware neural
coreference classification model to leverage (useful) domain knowledge together
with general commonsense knowledge for the task. Experimental evaluation on
realworld datasets involving five domains (product types) shows the
effectiveness of the approach.
- Abstract(参考訳): 意見レビューにおけるオブジェクト(製品名など)と属性(製品側面など)のコア参照の分類と解決は、意見マイニングのパフォーマンス向上に不可欠である。
しかし、このタスクはドメイン固有の知識(例えばiPadはタブレットであり、アスペクトの解像度を持つ)を考慮して、意見レビューのコア参照を特定する必要があるため、難しい。
また、各ドメインに対して手作り、キュレートされたドメイン固有の知識ベースをコンパイルするのも非常に時間と手間がかかります。
本稿では,オブジェクトや属性のコア参照を分類するドメイン固有の知識を自動的にマイニングし,活用する手法を提案する。
このアプローチは、ラベルのないレビューデータからドメイン固有の知識を抽出し、そのタスクの一般的な常識知識とともに(有用な)ドメイン知識を活用するために、知識認識ニューラルネットワーク分類モデルを訓練する。
5つのドメイン(製品タイプ)を含む実世界のデータセットに関する実験的評価は、このアプローチの有効性を示している。
関連論文リスト
- Learning to Discover Knowledge: A Weakly-Supervised Partial Domain Adaptation Approach [20.899013563493202]
ドメイン適応は、リッチアノテーションでソースドメインからの知識を活用することで、魅力的なパフォーマンスを示している。
特定の目標タスクに対して、関連するおよび高品質なソースドメインを収集するのは煩雑である。
本稿では、自己ペースト転送分類器学習(SP-TCL)と呼ばれる、単純で効果的なドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T12:54:07Z) - INSURE: An Information Theory Inspired Disentanglement and Purification
Model for Domain Generalization [55.86299081580768]
ドメイン一般化 (Domain Generalization, DG) は、観測された複数のソースドメインのトレーニングのみにより、目に見えないターゲットドメイン上の一般化可能なモデルを学習することを目的としている。
本稿では,情報理論iNspired diSentanglement and purification modEl (INSURE)を提案する。
PACS,OfficeHome,TerraIncognita,DomainNetなど,広く使用されている4つのDGベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2023-09-08T01:41:35Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Learning by Asking Questions for Knowledge-based Novel Object
Recognition [64.55573343404572]
実世界のオブジェクト認識には、認識すべきオブジェクトクラスが多数存在する。教師付き学習に基づく従来の画像認識は、トレーニングデータに存在するオブジェクトクラスのみを認識できるため、現実の世界においては限定的な適用性を有する。
そこで本研究では,モデルが新たなオブジェクトを瞬時に認識するのに役立つ質問生成を通じて,外部知識を取得するための枠組みについて検討する。
我々のパイプラインは、オブジェクトベースのオブジェクト認識と、新しい知識を得るために知識を意識した質問を生成する質問生成という2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-10-12T02:51:58Z) - Scene Recognition with Objectness, Attribute and Category Learning [8.581276116041401]
シーン分類は、それ自体が挑戦的な研究課題として確立されている。
画像認識は、シーン認識の優れたパフォーマンスの鍵となる。
本稿では,カテゴリ埋め込みを学習し,同時にシーン特性を予測するマルチタスク属性・シーン認識ネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T19:51:54Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Open Set Domain Recognition via Attention-Based GCN and Semantic
Matching Optimization [8.831857715361624]
本研究では,注意に基づくGCNとセマンティックマッチング最適化に基づくエンドツーエンドモデルを提案する。
実験結果から,提案モデルが未知のクラスの画像認識に優れるだけでなく,対象領域の様々な開放性にも適応できることが確認された。
論文 参考訳(メタデータ) (2021-05-11T12:05:36Z) - A Quantitative Perspective on Values of Domain Knowledge for Machine
Learning [27.84415856657607]
様々な形式のドメイン知識は、学習性能を向上させる上で重要な役割を担っている。
本研究では,ドメイン知識の価値を学習性能への貢献の観点から定量化する問題について検討する。
論文 参考訳(メタデータ) (2020-11-17T06:12:23Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
ディープラーニングモデルは、異なるドメイン間で限定的な一般化性を示す。
本稿では,MIDNet(Multual-Information-based Disentangled Neural Networks)を提案する。
本手法は手書き桁データセットと胎児超音波データセットを用いて画像分類を行う。
論文 参考訳(メタデータ) (2020-02-29T17:53:16Z) - Improving Domain-Adapted Sentiment Classification by Deep Adversarial
Mutual Learning [51.742040588834996]
ドメイン適応型感情分類(ドメイン適応型感情分類、Domain-adapted sentiment classification)は、ラベル付きソースドメインでトレーニングを行い、ラベルなしターゲットドメイン上で文書レベルの感情を適切に推測する。
本稿では,2つの特徴抽出器群,ドメイン識別器群,感情分類器群,ラベル探索器群を包含する新たな相互学習手法を提案する。
論文 参考訳(メタデータ) (2020-02-01T01:22:44Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
本稿では,DAKT問題に対処するための新しい適応型フレームワーク,すなわち知識追跡(AKT)を提案する。
まず,Deep Knowledge Trace(DKT)に基づく教育的特徴(スリップ,推測,質問文など)を取り入れ,優れた知識追跡モデルを得る。
第2の側面として、3つのドメイン適応プロセスを提案し、採用する。まず、ターゲットモデルトレーニングに有用なソースインスタンスを選択するために、自動エンコーダを事前訓練する。
論文 参考訳(メタデータ) (2020-01-14T15:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。