論文の概要: A Quantitative Perspective on Values of Domain Knowledge for Machine
Learning
- arxiv url: http://arxiv.org/abs/2011.08450v2
- Date: Tue, 9 Feb 2021 09:14:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:04:32.051142
- Title: A Quantitative Perspective on Values of Domain Knowledge for Machine
Learning
- Title(参考訳): 機械学習におけるドメイン知識の価値に関する定量的視点
- Authors: Jianyi Yang, Shaolei Ren
- Abstract要約: 様々な形式のドメイン知識は、学習性能を向上させる上で重要な役割を担っている。
本研究では,ドメイン知識の価値を学習性能への貢献の観点から定量化する問題について検討する。
- 参考スコア(独自算出の注目度): 27.84415856657607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the exploding popularity of machine learning, domain knowledge in
various forms has been playing a crucial role in improving the learning
performance, especially when training data is limited. Nonetheless, there is
little understanding of to what extent domain knowledge can affect a machine
learning task from a quantitative perspective. To increase the transparency and
rigorously explain the role of domain knowledge in machine learning, we study
the problem of quantifying the values of domain knowledge in terms of its
contribution to the learning performance in the context of informed machine
learning. We propose a quantification method based on Shapley value that fairly
attributes the overall learning performance improvement to different domain
knowledge. We also present Monte-Carlo sampling to approximate the fair value
of domain knowledge with a polynomial time complexity. We run experiments of
injecting symbolic domain knowledge into semi-supervised learning tasks on both
MNIST and CIFAR10 datasets, providing quantitative values of different symbolic
knowledge and rigorously explaining how it affects the machine learning
performance in terms of test accuracy.
- Abstract(参考訳): 機械学習の人気が爆発的に高まり、さまざまな形式のドメイン知識が、特にトレーニングデータが制限された場合の学習性能向上に重要な役割を果たしている。
それでも、定量的観点から、ドメイン知識が機械学習タスクにどの程度影響するかについての理解はほとんどない。
機械学習におけるドメイン知識の役割を徹底的に説明し、透明性を高めるために、情報機械学習の文脈における学習性能への貢献の観点から、ドメイン知識の価値を定量化する問題を研究する。
本稿では,知識の相違による学習性能の向上を定量的に評価する,Shapley値に基づく定量化手法を提案する。
また,モンテカルロサンプリングを行い,多項式時間の複雑性を伴う領域知識の公平な値を近似する。
MNISTとCIFAR10データセットの両方で、記号的ドメイン知識を半教師付き学習タスクに注入する実験を行い、異なる記号的知識の定量的値を提供し、それがテスト精度で機械学習のパフォーマンスに与える影響を厳格に説明する。
関連論文リスト
- Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs [58.09253149867228]
本稿では,LLMのドメイン知識を,問題解決に必要な数学的スキルの理解を通じて評価する。
汎用科学アシスタントとしてLLMを用いることで, LLMの確率分布の変化を評価するためにtextitNTKEvalを提案する。
系統的な分析では、文脈内学習中にドメイン理解の証拠が見つかる。
ある命令チューニングは、異なるデータでのトレーニングに関係なく、同様のパフォーマンス変化をもたらし、異なるスキルに対するドメイン理解の欠如を示唆している。
論文 参考訳(メタデータ) (2024-05-24T12:04:54Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Worth of knowledge in deep learning [3.132595571344153]
我々は、知識の価値を評価するために、解釈可能な機械学習にインスパイアされたフレームワークを提案する。
我々の研究結果は、依存、相乗効果、置換効果を含む、データと知識の複雑な関係を解明する。
我々のモデルに依存しないフレームワークは、様々な共通ネットワークアーキテクチャに適用でき、ディープラーニングモデルにおける事前知識の役割を包括的に理解することができる。
論文 参考訳(メタデータ) (2023-07-03T02:25:19Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
画像の領域と対応するセマンティック埋め込みとをマッチングする多モード集中型ZSLフレームワークを提案する。
我々は、大規模な実世界のデータに基づいて、広範囲な実験を行い、そのモデルを評価する。
論文 参考訳(メタデータ) (2023-06-14T13:07:48Z) - Graph Enabled Cross-Domain Knowledge Transfer [1.52292571922932]
クロスドメイン・ナレッジ・トランスファー(クロスドメイン・ナレッジ・トランスファー)は、優れた表現学習と関心領域における知識不足のギャップを軽減するためのアプローチである。
機械学習の観点からは、半教師付き学習のパラダイムは、基礎的な真実なしに大量のデータを活用し、目覚ましい学習性能向上を実現する。
論文 参考訳(メタデータ) (2023-04-07T03:02:10Z) - Informed Learning by Wide Neural Networks: Convergence, Generalization
and Sampling Complexity [27.84415856657607]
ドメイン知識が情報学習のパフォーマンスにどのような影響を及ぼすか、なぜ研究する。
本稿では,知識の利点をうまく活用し,ラベルと知識の不完全性のバランスをとるための,汎用的な情報教育目標を提案する。
論文 参考訳(メタデータ) (2022-07-02T06:28:25Z) - Knowledge Modelling and Active Learning in Manufacturing [0.6299766708197884]
オントロジとナレッジグラフは、幅広い概念、問題、設定をモデル化し、関連付ける手段を提供する。
どちらも、推論を導出し、行方不明の知識を識別することで、新しい知識を生成するために使用することができる。
アクティブラーニングは、ユーザのフィードバックを取得し、摩擦を減らし、知識獲得を最大化する最も有益なデータインスタンスを特定するために使用できる。
論文 参考訳(メタデータ) (2021-07-05T22:07:21Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
本稿では,DAKT問題に対処するための新しい適応型フレームワーク,すなわち知識追跡(AKT)を提案する。
まず,Deep Knowledge Trace(DKT)に基づく教育的特徴(スリップ,推測,質問文など)を取り入れ,優れた知識追跡モデルを得る。
第2の側面として、3つのドメイン適応プロセスを提案し、採用する。まず、ターゲットモデルトレーニングに有用なソースインスタンスを選択するために、自動エンコーダを事前訓練する。
論文 参考訳(メタデータ) (2020-01-14T15:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。