論文の概要: Stochastic embeddings of dynamical phenomena through variational
autoencoders
- arxiv url: http://arxiv.org/abs/2010.06265v1
- Date: Tue, 13 Oct 2020 10:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 00:39:32.728969
- Title: Stochastic embeddings of dynamical phenomena through variational
autoencoders
- Title(参考訳): 変分オートエンコーダによる動的現象の確率的埋め込み
- Authors: Constantino A. Garcia, Paulo Felix, Jesus M. Presedo, Abraham Otero
- Abstract要約: 位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いる。
我々の検証は、このアプローチが元の状態空間に類似した状態空間を復元するだけでなく、新しい時系列を合成できることを示している。
- 参考スコア(独自算出の注目度): 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: System identification in scenarios where the observed number of variables is
less than the degrees of freedom in the dynamics is an important challenge. In
this work we tackle this problem by using a recognition network to increase the
observed space dimensionality during the reconstruction of the phase space. The
phase space is forced to have approximately Markovian dynamics described by a
Stochastic Differential Equation (SDE), which is also to be discovered. To
enable robust learning from stochastic data we use the Bayesian paradigm and
place priors on the drift and diffusion terms. To handle the complexity of
learning the posteriors, a set of mean field variational approximations to the
true posteriors are introduced, enabling efficient statistical inference.
Finally, a decoder network is used to obtain plausible reconstructions of the
experimental data. The main advantage of this approach is that the resulting
model is interpretable within the paradigm of statistical physics. Our
validation shows that this approach not only recovers a state space that
resembles the original one, but it is also able to synthetize new time series
capturing the main properties of the experimental data.
- Abstract(参考訳): 観測された変数の数がダイナミクスの自由度よりも少ないシナリオにおけるシステム識別は、重要な課題である。
本研究では,位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いてこの問題に取り組む。
位相空間は、SDE(Stochastic Differential Equation)によって記述される約マルコフ力学を持つように強制される。
確率的データから堅牢な学習を可能にするためにベイズパラダイムを使用し、ドリフトと拡散の項に先行する。
後部学習の複雑さに対処するため、実後部への平均場変動近似のセットを導入し、効率的な統計的推測を可能にする。
最後に、デコーダネットワークを用いて、実験データの妥当な再構成を行う。
このアプローチの主な利点は、結果モデルが統計物理学のパラダイム内で解釈可能であることである。
我々の検証によれば、このアプローチは、元のものと似た状態空間を回復するだけでなく、実験データの主特性を捉えた新しい時系列を合成することができる。
関連論文リスト
- Dreaming Learning [41.94295877935867]
機械学習システムに新しい情報を導入することは、以前に格納されたデータに干渉する可能性がある。
スチュアート・カウフマンの随伴可能性の概念に着想を得た学習アルゴリズムを提案する。
ニューラルネットワークは、予想と異なる統計特性を持つデータシーケンスを円滑に受け入れ、統合することを前提としている。
論文 参考訳(メタデータ) (2024-10-23T09:17:31Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
空間の次元とデータ数が大きい体制における生成拡散モデルについて検討する。
本研究は, 逆向き発生拡散過程における3つの異なる動的状態を明らかにするものである。
崩壊時間の次元とデータ数への依存性は、拡散モデルにおける次元の呪いの徹底的な評価を与える。
論文 参考訳(メタデータ) (2024-02-28T17:19:26Z) - Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling [0.0]
適応型感受性感染症(SIS)疫学ネットワークのチップポイント集団動態を,データ駆動型機械学習支援方式で検討した。
複素実効微分方程式(eSDE)を物理的に有意な粗い平均場変数で同定する。
本研究では, 頻繁な現象の統計を, 繰り返しブルート力シミュレーションと, 確立された数学的・計算ツールを用いて研究する。
論文 参考訳(メタデータ) (2023-11-01T19:33:03Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
柔軟性を犠牲にすることなく識別性を強制する深層生成モデルである,潜時同定可能な変分オートエンコーダのクラスを提案する。
合成および実データ全体にわたって、潜在識別可能な変分オートエンコーダは、後方崩壊を緩和し、データの有意義な表現を提供する既存の方法より優れている。
論文 参考訳(メタデータ) (2023-01-02T06:16:56Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
本稿では,ベイズ状態空間モデルの隠れ状態を推定するための高速アルゴリズムを提案する。
事前トレーニングの後、データセットの後方分布を見つけるには、100分の1秒から10分の1秒かかる。
論文 参考訳(メタデータ) (2022-10-13T16:37:05Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。