IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways
- URL: http://arxiv.org/abs/2310.03401v1
- Date: Thu, 5 Oct 2023 09:10:05 GMT
- Title: IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways
- Authors: Antonio Boiano, Alessandro Enrico Cesare Redondi, Matteo Cesana,
- Abstract summary: This paper presents IoTScent, an open-source forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis.
IoTScent is specifically designed to operate over IEEE5.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread.
This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic.
- Score: 45.44831696628473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread deployment of Consumer Internet of Things devices in proximity to human activities makes them digital observers of our daily actions. This has led to a new field of digital forensics, known as IoT Forensics, where digital traces generated by IoT devices can serve as key evidence for forensic investigations. Thus, there is a need to develop tools that can efficiently acquire and store network traces from IoT ecosystems. This paper presents IoTScent, an open-source IoT forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis. Unlike other works focusing on IP-based protocols, IoTScent is specifically designed to operate over IEEE 802.15.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread. IoTScent offers live traffic capture and feature extraction capabilities, providing a framework for forensic data collection that simplifies the task of setting up a data collection pipeline, automating the data collection process, and providing ready-made features that can be used for forensic evidence extraction. This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic. The study presented here significantly contributes to the ongoing research in IoT Forensics by addressing the challenges faced in the field and publicly releasing the IoTScent tool.
Related papers
- Lightweight Dataset for Decoy Development to Improve IoT Security [0.1227734309612871]
This paper introduces a lightweight dataset to interpret IoT (Internet of Things) activity in preparation to create decoys.
The dataset comprises different scenarios in a real network setting.
arXiv Detail & Related papers (2024-07-29T12:01:50Z) - IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Survey and Analysis of IoT Operating Systems: A Comparative Study on the Effectiveness and Acquisition Time of Open Source Digital Forensics Tools [1.0968343822308813]
The main goal of this research project is to evaluate the effectiveness and speed of open-source forensic tools for digital evidence collecting from various Internet-of-Things (IoT) devices.
The project will create and configure many IoT environments, across popular IoT operating systems, and run common forensics tasks in order to accomplish this goal.
arXiv Detail & Related papers (2024-07-01T17:06:32Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Zero-Bias Deep Learning for Accurate Identification of Internet of
Things (IoT) Devices [20.449229983283736]
We propose an enhanced deep learning framework for IoT device identification using physical layer signals.
We have evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation.
arXiv Detail & Related papers (2020-08-27T20:50:48Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.