論文の概要: Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water
Distribution Systems
- arxiv url: http://arxiv.org/abs/2010.06460v1
- Date: Tue, 13 Oct 2020 15:13:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 23:11:00.803505
- Title: Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water
Distribution Systems
- Title(参考訳): 配水システムにおけるポンプのリアルタイム最適化のための深層強化学習
- Authors: Gergely Hajgat\'o and Gy\"orgy Pa\'al and B\'alint Gyires-T\'oth
- Abstract要約: 深部強化学習は2つの配水システムにおけるポンプの制御器として提示される。
DRLエージェントが最高性能のベースラインに対して達成した総効率は0.98以上であり、スピードアップはそれに比べて約2倍である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time control of pumps can be an infeasible task in water distribution
systems (WDSs) because the calculation to find the optimal pump speeds is
resource-intensive. The computational need cannot be lowered even with the
capabilities of smart water networks when conventional optimization techniques
are used. Deep reinforcement learning (DRL) is presented here as a controller
of pumps in two WDSs. An agent based on a dueling deep q-network is trained to
maintain the pump speeds based on instantaneous nodal pressure data. General
optimization techniques (e.g., Nelder-Mead method, differential evolution)
serve as baselines. The total efficiency achieved by the DRL agent compared to
the best performing baseline is above 0.98, whereas the speedup is around 2x
compared to that. The main contribution of the presented approach is that the
agent can run the pumps in real-time because it depends only on measurement
data. If the WDS is replaced with a hydraulic simulation, the agent still
outperforms conventional techniques in search speed.
- Abstract(参考訳): 最適なポンプ速度を求める計算が資源集約的であるため、ポンプのリアルタイム制御は水流システム(wdss)では実現不可能である。
従来の最適化手法を使用する場合,スマートウォーターネットワークの能力によっても,計算ニーズを下げることはできない。
深部強化学習(DRL)は2つのWDSのポンプの制御装置として提供される。
デューリング深層qネットワークに基づくエージェントを訓練し、瞬時ノーダル圧力データに基づいてポンプ速度を維持する。
一般的な最適化手法(例えば、Nelder-Mead法、微分進化法)がベースラインとなる。
DRLエージェントが最高性能のベースラインに対して達成した総効率は0.98以上であり、スピードアップはそれに比べて約2倍である。
提案手法の主な貢献は, 測定データのみに依存するため, エージェントがポンプをリアルタイムに動作させることである。
WDSを油圧シミュレーションに置き換える場合、エージェントは依然として探索速度において従来の手法より優れている。
関連論文リスト
- RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
本稿では,低速エージェントと高速エージェントからなる2レベル階層型フレームワークRL-GPTを提案する。
遅いエージェントはコーディングに適したアクションを分析し、速いエージェントはコーディングタスクを実行する。
この分解は、各エージェントが特定のタスクに効果的に集中し、パイプライン内で非常に効率的なことを証明します。
論文 参考訳(メタデータ) (2024-02-29T16:07:22Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Efficient Diffusion Policies for Offline Reinforcement Learning [85.73757789282212]
Diffsuion-QLは、拡散モデルでポリシーを表現することによってオフラインRLの性能を大幅に向上させる。
これら2つの課題を克服するために,効率的な拡散政策(EDP)を提案する。
EDPは、サンプリングチェーンの実行を避けるために、トレーニング中の腐敗したアクションからアクションを構築する。
論文 参考訳(メタデータ) (2023-05-31T17:55:21Z) - Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP [62.81300791178381]
無線による分散エッジ学習のボトルネックは、コンピューティングから通信へと移行した。
DEL用の既存のTCPベースのデータネットワークスキームは、アプリケーションに依存しず、アプリケーション層要求に応じて調整を施さない。
DELのためのモデルベースと深部強化学習(DRL)に基づくMP TCPを組み合わせたハイブリッドマルチパスTCP(MP TCP)を開発した。
論文 参考訳(メタデータ) (2022-11-03T09:08:30Z) - RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch [23.104546205134103]
深層強化学習(DRL)モデルの訓練は通常、高いコストを必要とする。
DRLモデルの圧縮は、トレーニングアクセラレーションとモデル展開に大きな可能性を秘めている。
我々は,「textbfRigged textbfReinforcement textbfLearning textbfLottery (RLx2) 」という,新しいスパースDRLトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-30T12:18:43Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
過去の経験のデータセットを最適な行動にマップするために、ネットワークをトレーニングします。
検索プロセスは、現在のコンテキストで有用なデータセットから情報を取得するために訓練される。
検索強化R2D2はベースラインR2D2エージェントよりもかなり高速に学習し,より高いスコアを得ることを示す。
論文 参考訳(メタデータ) (2022-02-17T02:44:05Z) - RAPID-RL: A Reconfigurable Architecture with Preemptive-Exits for
Efficient Deep-Reinforcement Learning [7.990007201671364]
効率的な深部RL(RAPID-RL)のためのプリエンプティブ出口を持つ再構成可能なアーキテクチャを提案する。
RAPID-RLは入力の難易度に基づいてプリエンプティブ層の条件付き活性化を可能にする。
RAPID-RL は Atari (Drone Navigation) タスクにおいて 0.88x (0.91x) 以上の性能を維持しながら, 演算数 0.34x (0.25x) を発生させることを示す。
論文 参考訳(メタデータ) (2021-09-16T21:30:40Z) - Smart Scheduling based on Deep Reinforcement Learning for Cellular
Networks [18.04856086228028]
深部強化学習(DRL)に基づくスマートスケジューリング手法を提案する。
実装フレンドリーな設計、すなわちエージェントのためのスケーラブルなニューラルネットワーク設計と仮想環境トレーニングフレームワークを提供する。
本研究では, DRLベースのスマートスケジューリングが従来のスケジューリング方式を上回り, 実用システムにも適用できることを示した。
論文 参考訳(メタデータ) (2021-03-22T02:09:16Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
オンラインリソーススケジューリングフレームワークは、IoT(Internet of Things)の全ユーザに対して、重み付けされたタスクレイテンシの総和を最小化するために提案されている。
以下を含む深層強化学習(DRL)に基づく解法を提案する。
DRLがポリシーネットワークをトレーニングし、最適なオフロードポリシーを見つけるのを支援するために、保存および優先されたエクスペリエンスリプレイ(2p-ER)を導入する。
論文 参考訳(メタデータ) (2020-01-24T23:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。