論文の概要: Credit card fraud detection using machine learning: A survey
- arxiv url: http://arxiv.org/abs/2010.06479v1
- Date: Tue, 13 Oct 2020 15:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 00:12:50.980347
- Title: Credit card fraud detection using machine learning: A survey
- Title(参考訳): 機械学習を用いたクレジットカード不正検出:調査
- Authors: Yvan Lucas, Johannes Jurgovsky
- Abstract要約: 本稿では,データ駆動型クレジットカード不正検出機能と,その複雑な課題に対処するための機械学習手法について検討する。
特に、まず一般的なクレジットカード検出タスクを特徴付けます。データセットとその属性、メトリックの選択と、そのような不均衡なデータセットを扱ういくつかの方法です。
- 参考スコア(独自算出の注目度): 0.5134435281973136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credit card fraud has emerged as major problem in the electronic payment
sector. In this survey, we study data-driven credit card fraud detection
particularities and several machine learning methods to address each of its
intricate challenges with the goal to identify fraudulent transactions that
have been issued illegitimately on behalf of the rightful card owner. In
particular, we first characterize a typical credit card detection task: the
dataset and its attributes, the metric choice along with some methods to handle
such unbalanced datasets. These questions are the entry point of every credit
card fraud detection problem. Then we focus on dataset shift (sometimes called
concept drift), which refers to the fact that the underlying distribution
generating the dataset evolves over times: For example, card holders may change
their buying habits over seasons and fraudsters may adapt their strategies.
This phenomenon may hinder the usage of machine learning methods for real world
datasets such as credit card transactions datasets. Afterwards we highlights
different approaches used in order to capture the sequential properties of
credit card transactions. These approaches range from feature engineering
techniques (transactions aggregations for example) to proper sequence modeling
methods such as recurrent neural networks (LSTM) or graphical models (hidden
markov models).
- Abstract(参考訳): クレジットカード詐欺は電子決済業界で大きな問題となっている。
本研究では,カード所有者に代わって不正に発行された不正取引を識別することを目的として,データ駆動型クレジットカード不正検出機能と,その複雑な課題に対処する機械学習手法について検討した。
特に、まず一般的なクレジットカード検出タスクを特徴付けます。データセットとその属性、メトリックの選択と、そのような不均衡なデータセットを扱ういくつかの方法です。
これらの質問は、クレジットカード詐欺検出問題のエントリポイントである。
次に、データセットシフト(コンセプトドリフトと呼ばれることもある)に注目します。これは、データセットを生成する基盤となるディストリビューションが時間とともに進化するという事実を指します。
この現象は、クレジットカードトランザクションデータセットのような現実世界のデータセットに機械学習メソッドの使用を妨げる可能性がある。
その後、クレジットカードトランザクションのシーケンシャルな特性をキャプチャするために使われるさまざまなアプローチを強調します。
これらのアプローチは、機能エンジニアリング技術(トランザクショナルアグリゲーションなど)から、リカレントニューラルネットワーク(LSTM)やグラフィカルモデル(隠れマルコフモデル)といった適切なシーケンスモデリング手法まで様々である。
関連論文リスト
- Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Credit Card Fraud Detection Using Enhanced Random Forest Classifier for
Imbalanced Data [0.8223798883838329]
本稿では,この問題を解決するためにランダムフォレスト(RF)アルゴリズムを実装した。
本研究ではクレジットカード取引のデータセットを用いた。
論文 参考訳(メタデータ) (2023-03-11T22:59:37Z) - Credit card fraud detection - Classifier selection strategy [0.0]
アノテーション付きトランザクションのサンプルを使用して、機械学習の分類アルゴリズムは不正を検出することを学習する。
不正データセットは多種多様で 矛盾した特徴を示します
特徴的不均衡な不正検出データセットに対するデータ駆動型分類器選択手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T07:13:42Z) - Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection [0.0]
取引量、詐欺の独自性、詐欺師の巧妙さは詐欺を検知する上で大きな課題である。
機械学習、人工知能、ビッグデータの出現は、詐欺と戦うための新しいツールを公開した。
しかし,不正検出アルゴリズムの開発は,不正データの極めて不均衡な性質のため,困難で遅かった。
論文 参考訳(メタデータ) (2022-08-20T07:53:51Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
クレジットカード不正を早期に検出するための,スーパーアプリ顧客情報,携帯電話回線データ,従来型の信用リスク変数を融合した機能レベルの有効性について検討する。
クレジットカードのデジタルプラットフォームデータベースから約9万人のユーザを対象に,我々のアプローチを評価した。
論文 参考訳(メタデータ) (2021-11-05T19:10:35Z) - Credit Card Fraud Detection using Machine Learning: A Study [2.5829043503611318]
世界は急速にデジタル化に向かっており、貨幣取引はキャッシュレスになりつつある。
非詐欺行為から不正取引を分析し、検出する必要がある。
本稿では,クレジットカード不正を検出するための各種手法について概説する。
論文 参考訳(メタデータ) (2021-08-23T08:30:24Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Deep Learning Methods for Credit Card Fraud Detection [3.069837038535869]
本稿では,クレジットカード詐欺検出問題の深層学習手法について検討する。
パフォーマンスを3つの金融データセット上のさまざまな機械学習アルゴリズムと比較する。
実験の結果,従来の機械学習モデルに対する深層学習手法の性能が向上した。
論文 参考訳(メタデータ) (2020-12-07T14:48:58Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
コールドスタート(Cold-start)は、新しいユーザの認証に検出システムが失敗したことを指す重要な問題である。
本稿では,各コンポーネントに固有の表現を可能にする異種情報ネットワーク (HIN) としてレビューシステムをモデル化する。
HINとグラフ誘導はカモフラージュ問題(本物のレビュー付き詐欺師)に対処するのに役立ち、これはコールドスタートと組み合わされた場合、すなわち真に最初のレビューを持つ新しい詐欺師がより深刻であることが示されている。
論文 参考訳(メタデータ) (2020-06-10T08:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。