Accurate Calibration of Agent-based Epidemiological Models with Neural
Network Surrogates
- URL: http://arxiv.org/abs/2010.06558v1
- Date: Tue, 13 Oct 2020 17:19:30 GMT
- Title: Accurate Calibration of Agent-based Epidemiological Models with Neural
Network Surrogates
- Authors: Rushil Anirudh, Jayaraman J. Thiagarajan, Peer-Timo Bremer, Timothy C.
Germann, Sara Y. Del Valle, Frederick H. Streitz
- Abstract summary: We present a new approach to calibrate an agent-based model -- EpiCast -- using a large set of simulation ensembles for different major metropolitan areas of the United States.
In particular, we propose: a new neural network based surrogate model able to simultaneously emulate all different locations; and a novel posterior estimation that provides not only more accurate posterior estimates of all parameters but enables the joint fitting of global parameters across regions.
- Score: 33.88734751290751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibrating complex epidemiological models to observed data is a crucial step
to provide both insights into the current disease dynamics, i.e.\ by estimating
a reproductive number, as well as to provide reliable forecasts and scenario
explorations. Here we present a new approach to calibrate an agent-based model
-- EpiCast -- using a large set of simulation ensembles for different major
metropolitan areas of the United States. In particular, we propose: a new
neural network based surrogate model able to simultaneously emulate all
different locations; and a novel posterior estimation that provides not only
more accurate posterior estimates of all parameters but enables the joint
fitting of global parameters across regions.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - On the calibration of compartmental epidemiological models [4.2456818663079865]
We present an overview of calibrating strategies that can be employed, including several optimization methods and reinforcement learning.
We discuss the benefits and drawbacks of these methods and highlight relevant practical conclusions from our experiments.
Further research is needed to validate the effectiveness and scalability of these approaches in different epidemiological contexts.
arXiv Detail & Related papers (2023-12-09T03:57:06Z) - A novel approach for predicting epidemiological forecasting parameters
based on real-time signals and Data Assimilation [3.4901787251083163]
We implement an ensemble of Convolutional Neural Networks (CNN) models using various data sources and fusion methodology to build robust predictions.
The combination of meteorological signals and social media-based population density maps improved the performance and flexibility of our prediction of the COVID-19 outbreak in London.
arXiv Detail & Related papers (2023-07-03T17:05:29Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data [1.433758865948252]
We show that state-of-the-art models for estimating epidemiological parameters, e.g.transmission rates, can be inappropriate when faced with complex systems.
We generate three complex outbreak scenarios by combining incidence curves from multiple epidemics.
We evaluate two data-generating models within this Bayesian inference framework.
arXiv Detail & Related papers (2021-06-20T03:41:19Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - An Epidemiological Modelling Approach for Covid19 via Data Assimilation [18.837659009007705]
The global pandemic of the 2019-nCov requires the evaluation of policy interventions to mitigate future social and economic costs of quarantine measures worldwide.
We propose an epidemiological model for forecasting and policy evaluation which incorporates new data in real-time through variational data assimilation.
arXiv Detail & Related papers (2020-04-25T12:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.