Enhancing UAV Path Planning Efficiency Through Accelerated Learning
- URL: http://arxiv.org/abs/2501.10141v1
- Date: Fri, 17 Jan 2025 12:05:24 GMT
- Title: Enhancing UAV Path Planning Efficiency Through Accelerated Learning
- Authors: Joseanne Viana, Boris Galkin, Lester Ho, Holger Claussen,
- Abstract summary: This study aims to develop a learning algorithm for the path planning of UAV wireless communication relays.
It can reduce storage requirements and accelerate Deep Reinforcement Learning (DRL) convergence.
- Score: 3.216130900831975
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly essential in various fields such as surveillance, reconnaissance, and telecommunications. This study aims to develop a learning algorithm for the path planning of UAV wireless communication relays, which can reduce storage requirements and accelerate Deep Reinforcement Learning (DRL) convergence. Assuming the system possesses terrain maps of the area and can estimate user locations using localization algorithms or direct GPS reporting, it can input these parameters into the learning algorithms to achieve optimized path planning performance. However, higher resolution terrain maps are necessary to extract topological information such as terrain height, object distances, and signal blockages. This requirement increases memory and storage demands on UAVs while also lengthening convergence times in DRL algorithms. Similarly, defining the telecommunication coverage map in UAV wireless communication relays using these terrain maps and user position estimations demands higher memory and storage utilization for the learning path planning algorithms. Our approach reduces path planning training time by applying a dimensionality reduction technique based on Principal Component Analysis (PCA), sample combination, Prioritized Experience Replay (PER), and the combination of Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss calculations in the coverage map estimates, thereby enhancing a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The proposed solution reduces the convergence episodes needed for basic training by approximately four times compared to the traditional TD3.
Related papers
- SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.
To this end, insights from a digital twin with real-world wireless ray tracing data are explored.
Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
A key feature of our approach is a new accuracy model for deep learning-based architectures.
We evaluate our approach on the application of crop/weed segmentation in precision agriculture using real-world field data.
arXiv Detail & Related papers (2021-08-04T07:30:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
This work presents a method for autonomous UAV path planning based on deep reinforcement learning (DRL)
We compare coverage path planning ( CPP), where the UAV's goal is to survey an area of interest to data harvesting (DH), where the UAV collects data from distributed Internet of Things (IoT) sensor devices.
By exploiting structured map information of the environment, we train double deep Q-networks (DDQNs) with identical architectures on both distinctly different mission scenarios.
arXiv Detail & Related papers (2020-10-14T09:59:10Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.