A Light Heterogeneous Graph Collaborative Filtering Model using Textual
Information
- URL: http://arxiv.org/abs/2010.07027v5
- Date: Fri, 22 Oct 2021 07:26:03 GMT
- Title: A Light Heterogeneous Graph Collaborative Filtering Model using Textual
Information
- Authors: Chaoyang Wang, Zhiqiang Guo, Guohui Li, Jianjun Li, Peng Pan, Ke Liu
- Abstract summary: We exploit the relevant and easily accessible textual information by advanced natural language processing (NLP) models.
We propose a light RGCN-based (RGCN, relational graph convolutional network) collaborative filtering method on heterogeneous graphs.
- Score: 16.73333758538986
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to the development of graph neural networks, graph-based representation
learning methods have made great progress in recommender systems. However, data
sparsity is still a challenging problem that most graph-based recommendation
methods are confronted with. Recent works try to address this problem by
utilizing side information. In this paper, we exploit the relevant and easily
accessible textual information by advanced natural language processing (NLP)
models and propose a light RGCN-based (RGCN, relational graph convolutional
network) collaborative filtering method on heterogeneous graphs. Specifically,
to incorporate rich textual knowledge, we utilize a pre-trained NLP model to
initialize the embeddings of text nodes. Afterward, by performing a simplified
RGCN-based node information propagation on the constructed heterogeneous graph,
the embeddings of users and items can be adjusted with textual knowledge, which
effectively alleviates the negative effects of data sparsity. Moreover, the
matching function used by most graph-based representation learning methods is
the inner product, which is not appropriate for the obtained embeddings that
contain complex semantics. We design a predictive network that combines
graph-based representation learning with neural matching function learning, and
demonstrate that this architecture can bring a significant performance
improvement. Extensive experiments are conducted on three publicly available
datasets, and the results verify the superior performance of our method over
several baselines.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
We introduce a self-supervised learning method to enhance the representations of graph-level learned by Graph Neural Networks.
To get a comprehensive understanding of the graph structure, we propose an ensemble-learning like subgraph method.
And to achieve efficient and effective contrasive learning, a Head-Tail contrastive samples construction method is proposed.
arXiv Detail & Related papers (2021-03-24T12:06:12Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.