論文の概要: Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions
- arxiv url: http://arxiv.org/abs/2010.07221v2
- Date: Fri, 25 Feb 2022 11:09:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 14:04:34.246491
- Title: Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions
- Title(参考訳): 協調型人間-ロボットインタラクションにおけるロボット個性のモデル化
- Authors: Nikhil Churamani and Pablo Barros and Hatice Gunes and Stefan Wermter
- Abstract要約: 協調的な相互作用は、人間の感情的行動のダイナミクスに適応するために社会ロボットを必要とする。
社会ロボットにおける人格駆動行動生成のための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 16.40684407420441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative interactions require social robots to adapt to the dynamics of
human affective behaviour. Yet, current approaches for affective behaviour
generation in robots focus on instantaneous perception to generate a one-to-one
mapping between observed human expressions and static robot actions. In this
paper, we propose a novel framework for personality-driven behaviour generation
in social robots. The framework consists of (i) a hybrid neural model for
evaluating facial expressions and speech, forming intrinsic affective
representations in the robot, (ii) an Affective Core, that employs
self-organising neural models to embed robot personality traits like patience
and emotional actuation, and (iii) a Reinforcement Learning model that uses the
robot's affective appraisal to learn interaction behaviour. For evaluation, we
conduct a user study (n = 31) where the NICO robot acts as a proposer in the
Ultimatum Game. The effect of robot personality on its negotiation strategy is
witnessed by participants, who rank a patient robot with high emotional
actuation higher on persistence, while an inert and impatient robot higher on
its generosity and altruistic behaviour.
- Abstract(参考訳): 協調的な相互作用は、人間の感情行動のダイナミクスに適応するために社会ロボットを必要とする。
しかし、ロボットの感情行動生成に対する現在のアプローチは、観察された人間の表情と静的ロボット動作の1対1マッピングを生成するために、瞬間的な知覚に焦点を当てている。
本稿では,ソーシャルロボットにおけるパーソナリティ駆動行動生成のための新しい枠組みを提案する。
フレームワークは、
(i)表情と発話を評価し、ロボットに内在する情緒表現を形成するハイブリッドニューラルモデル
(II)自己組織型ニューラルモデルを用いて忍耐力や情緒運動といったロボットの性格特性を組み込むAffective Core
(iii)ロボットの感情評価を用いてインタラクション動作を学習する強化学習モデル。
評価のために,nicoロボットが最後通しゲームにおいて提案者として機能するユーザスタディ(n = 31)を行う。
ロボットのパーソナリティが交渉戦略に及ぼす影響は、患者ロボットの持続性が高く、不活性で経験の浅いロボットがその寛大さと利他的行動に影響を及ぼすのに対して、被験者が目撃する。
関連論文リスト
- Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Controlling the Sense of Agency in Dyadic Robot Interaction: An Active
Inference Approach [6.421670116083633]
変形型繰り返しニューラルネットワークモデルを用いて,ロボットのダイアディック模倣相互作用を検討する。
トレーニング中の自由エネルギーを最小化する複雑性項の制御が,ネットワークの動的特性をいかに決定するかを検討した。
論文 参考訳(メタデータ) (2021-03-03T02:38:09Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - Human Perception of Intrinsically Motivated Autonomy in Human-Robot
Interaction [2.485182034310304]
人間に生息する環境でロボットを使用する場合の課題は、人間同士の相互作用によって引き起こされる摂動に対して、魅力的だが堅牢な振る舞いを設計することである。
我々のアイデアは、ロボットに本質的なモチベーション(IM)を持たせることで、新しい状況に対処し、人間以外の真の社会的存在として現れるようにすることです。
本稿では、自律的に生成された振る舞いを相互に比較できる「ロボット学者」による研究設計について述べる。
論文 参考訳(メタデータ) (2020-02-14T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。