論文の概要: Deep Learning on Real Geophysical Data: A Case Study for Distributed
Acoustic Sensing Research
- arxiv url: http://arxiv.org/abs/2010.07842v1
- Date: Thu, 15 Oct 2020 15:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 05:19:59.919101
- Title: Deep Learning on Real Geophysical Data: A Case Study for Distributed
Acoustic Sensing Research
- Title(参考訳): 実地球物理データによる深層学習:分散音響センシング研究の事例研究
- Authors: Vincent Dumont, Ver\'onica Rodr\'iguez Tribaldos, Jonathan
Ajo-Franklin, Kesheng Wu
- Abstract要約: 地震データから使用可能なエネルギーを識別するために, 微調整, 効率的スケールの深層学習分類器を提案する。
16倍のGPUを使用すれば、5万のデータセット上で2桁以上のトレーニング速度を向上できることを示す。
- 参考スコア(独自算出の注目度): 1.7237878022600697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning approaches for real, large, and complex scientific data sets
can be very challenging to design. In this work, we present a complete search
for a finely-tuned and efficiently scaled deep learning classifier to identify
usable energy from seismic data acquired using Distributed Acoustic Sensing
(DAS). While using only a subset of labeled images during training, we were
able to identify suitable models that can be accurately generalized to unknown
signal patterns. We show that by using 16 times more GPUs, we can increase the
training speed by more than two orders of magnitude on a 50,000-image data set.
- Abstract(参考訳): リアルで大規模で複雑な科学的データセットに対するディープラーニングアプローチは、設計が非常に難しい。
本研究では,DAS(Distributed Acoustic Sensing)を用いて得られた地震データから使用可能なエネルギーを同定するために,微調整および効率よくスケールしたディープラーニング分類器の完全探索を行う。
トレーニング中にラベル付き画像のサブセットのみを使用して、未知の信号パターンに正確に一般化できる適切なモデルを特定することができた。
16倍のGPUを使用すれば、5万のデータセット上で2桁以上のトレーニング速度を向上できることを示す。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - RGB-D based Stair Detection using Deep Learning for Autonomous Stair
Climbing [6.362951673024623]
本稿では,RGBマップと深度マップの両方の入力を持つニューラルネットワークアーキテクチャを提案する。
具体的には,RGBマップと深度マップの相補関係をネットワークが学習できるように,選択モジュールを設計する。
提案手法は,従来の最先端深層学習法と比較して精度の向上とリコールが可能であることを示す。
論文 参考訳(メタデータ) (2022-12-02T11:22:52Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
畳み込みニューラルネットワークは、空間情報を抽出するための非常に有能なツールである。
LSTM(Long-Short term memory)は、シーケンシャルデータを処理するための有効な機器である。
我々のフレームワークのVGG-16アーキテクチャは、50のトレーニングで100%の分類精度が得られる。
論文 参考訳(メタデータ) (2022-06-24T19:56:01Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Generation of microbial colonies dataset with deep learning style
transfer [0.0]
深層学習モデルの学習に使用できるペトリ料理の微生物学的画像の合成データセットを作成するための戦略を導入する。
本手法は, 5種類の微生物の局在, セグメンテーション, 分類が可能なニューラルネットワークモデルのトレーニングに使用できる, リアルな画像のデータセットを合成できることを示す。
論文 参考訳(メタデータ) (2021-11-06T03:11:01Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
本稿では, ホログラフィ変換を用いた画像検索手法を提案する。
また,ラベル付け手順を必要としないコントラスト学習によって誘導されるDNNのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-21T17:27:07Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Deep Learning for Surface Wave Identification in Distributed Acoustic
Sensing Data [1.7237878022600697]
実データ,複雑なDASデータを処理するための,高度にスケーラブルで効率的なアプローチを提案する。
深い教師付き学習は、人類活動によって生じる「有用な」コヒーレントな表面波を特定するために用いられる。
本手法は,地中活動と埋設センサとの相互作用を記述した解釈パターンを提供する。
論文 参考訳(メタデータ) (2020-10-15T15:53:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。