Neural Ordinary Differential Equations for Intervention Modeling
- URL: http://arxiv.org/abs/2010.08304v1
- Date: Fri, 16 Oct 2020 10:55:12 GMT
- Title: Neural Ordinary Differential Equations for Intervention Modeling
- Authors: Daehoon Gwak, Gyuhyeon Sim, Michael Poli, Stefano Massaroli, Jaegul
Choo, Edward Choi
- Abstract summary: Real-world systems often involve external interventions that cause changes in the system dynamics.
Neural ODE and a number of its recent variants are not suitable for modeling such interventions as they do not properly model the observations and the interventions separately.
We propose a novel neural ODE-based approach (IMODE) that properly model the effect of external interventions by employing two ODE functions to separately handle the observations and the interventions.
- Score: 30.127870899307254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By interpreting the forward dynamics of the latent representation of neural
networks as an ordinary differential equation, Neural Ordinary Differential
Equation (Neural ODE) emerged as an effective framework for modeling a system
dynamics in the continuous time domain. However, real-world systems often
involves external interventions that cause changes in the system dynamics such
as a moving ball coming in contact with another ball, or such as a patient
being administered with particular drug. Neural ODE and a number of its recent
variants, however, are not suitable for modeling such interventions as they do
not properly model the observations and the interventions separately. In this
paper, we propose a novel neural ODE-based approach (IMODE) that properly model
the effect of external interventions by employing two ODE functions to
separately handle the observations and the interventions. Using both synthetic
and real-world time-series datasets involving interventions, our experimental
results consistently demonstrate the superiority of IMODE compared to existing
approaches.
Related papers
- CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics [1.7614751781649955]
We propose an innovative approach that enhances PK and integrated PK-PD modeling.
Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs)
Results demonstrate that this methodology offers a robust framework that markedly enhances the model's depiction of drug absorption rates and distributed delayed responses.
arXiv Detail & Related papers (2024-09-19T15:01:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
We show that diffusion-based generative models exhibit many properties favourable for neural operators.
We propose to train a single model adaptable to multiple tasks, by alternating between the tasks during training.
arXiv Detail & Related papers (2024-05-11T21:23:55Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.