Deep Learning based Automated Forest Health Diagnosis from Aerial Images
- URL: http://arxiv.org/abs/2010.08437v1
- Date: Fri, 16 Oct 2020 15:07:56 GMT
- Title: Deep Learning based Automated Forest Health Diagnosis from Aerial Images
- Authors: Chia-Yen Chiang, Chloe Barnes, Plamen Angelov, and Richard Jiang
- Abstract summary: Aerial image-based forest analysis can give an early detection of dead trees and living trees.
We present a new framework for automated dead tree detection from aerial images using a re-trained Mask RCNN approach.
We are able to automatically produce and calculate number of dead tree masks to label the dead trees in an image.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global climate change has had a drastic impact on our environment. Previous
study showed that pest disaster occured from global climate change may cause a
tremendous number of trees died and they inevitably became a factor of forest
fire. An important portent of the forest fire is the condition of forests.
Aerial image-based forest analysis can give an early detection of dead trees
and living trees. In this paper, we applied a synthetic method to enlarge
imagery dataset and present a new framework for automated dead tree detection
from aerial images using a re-trained Mask RCNN (Mask Region-based
Convolutional Neural Network) approach, with a transfer learning scheme. We
apply our framework to our aerial imagery datasets,and compare eight fine-tuned
models. The mean average precision score (mAP) for the best of these models
reaches 54%. Following the automated detection, we are able to automatically
produce and calculate number of dead tree masks to label the dead trees in an
image, as an indicator of forest health that could be linked to the causal
analysis of environmental changes and the predictive likelihood of forest fire.
Related papers
- NeRF-Accelerated Ecological Monitoring in Mixed-Evergreen Redwood Forest [0.0]
We present a comparison of MLS and NeRF forest reconstructions for the purpose of trunk diameter estimation in a mixed-evergreen Redwood forest.
We propose an improved DBH-estimation method using convex-hull modeling.
arXiv Detail & Related papers (2024-10-09T20:32:15Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
We describe a simple and effective forest-based method set called em ForensicsForest Family to detect GAN-generate faces.
ForenscisForest is a newly proposed Multi-scale Hierarchical Cascade Forest.
Hybrid ForensicsForest integrates the CNN layers into models.
Divide-and-Conquer ForensicsForest can construct a forest model using only a portion of training samplings.
arXiv Detail & Related papers (2023-08-02T06:41:19Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - MultiEarth 2022 Deforestation Challenge -- ForestGump [0.0]
We present an accurate deforestation estimation method with conventional UNet and comprehensive data processing.
The diverse channels of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to train deep neural networks.
With the proposed method, deforestation status for novel queries are successfully estimated with high accuracy.
arXiv Detail & Related papers (2022-06-22T04:10:07Z) - A hybrid convolutional neural network/active contour approach to
segmenting dead trees in aerial imagery [0.5276232626689566]
Dead trees are a key indicator of overall forest health, housing one-third of forest ecosystem biodiversity, and constitute 8%of the global carbon stocks.
We present a novel method to construct precise shape contours of dead trees from aerial photographs by combining established convolutional neural networks with a novel active contour model in an energy minimization framework.
arXiv Detail & Related papers (2021-12-06T00:53:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
This proposal paper describes the first systematic comparison of forest carbon estimation from aerial imagery, satellite imagery, and ground-truth field measurements.
Aerial imagery is significantly more expensive to collect and it is unclear by how much the higher resolution improves the forest carbon estimation.
Our initial results show that forest carbon estimates from satellite imagery can overestimate above-ground biomass by more than 10-times for tropical reforestation projects.
arXiv Detail & Related papers (2021-07-23T15:59:52Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.