論文の概要: Dynamic Ensemble Learning for Credit Scoring: A Comparative Study
- arxiv url: http://arxiv.org/abs/2010.08930v1
- Date: Sun, 18 Oct 2020 07:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 04:23:49.774945
- Title: Dynamic Ensemble Learning for Credit Scoring: A Comparative Study
- Title(参考訳): クレジット・スコーリングのための動的アンサンブル学習 : 比較研究
- Authors: Mahsan Abdoli, Mohammad Akbari, Jamal Shahrabi
- Abstract要約: 本研究では、アンサンブル学習モデルの様々な動的選択手法をベンチマークし、大規模かつ高次元のリアルタイムクレジットスコアリングデータセット上でのクレジットスコアリングタスクを正確に推定する。
本研究の結果から,特にバランスの取れない訓練環境において,動的選択手法によりアンサンブルモデルの性能が向上することが示唆された。
- 参考スコア(独自算出の注目度): 3.6503610360564687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic credit scoring, which assesses the probability of default by loan
applicants, plays a vital role in peer-to-peer lending platforms to reduce the
risk of lenders. Although it has been demonstrated that dynamic selection
techniques are effective for classification tasks, the performance of these
techniques for credit scoring has not yet been determined. This study attempts
to benchmark different dynamic selection approaches systematically for ensemble
learning models to accurately estimate the credit scoring task on a large and
high-dimensional real-life credit scoring data set. The results of this study
indicate that dynamic selection techniques are able to boost the performance of
ensemble models, especially in imbalanced training environments.
- Abstract(参考訳): ローン申請者によるデフォルトの確率を評価する自動信用スコアは、ローンのリスクを減らすためにピアツーピア融資プラットフォームにおいて重要な役割を果たす。
動的選択手法が分類タスクに有効であることが実証されているが、これらの手法のクレジットスコアリング性能はまだ決定されていない。
本研究では,大規模かつ高次元のクレジットスコアリングデータセット上でのクレジットスコアリングタスクを精度良く推定するために,アンサンブル学習モデルのための動的選択手法を系統的にベンチマークする。
本研究では,特に不均衡なトレーニング環境において,動的選択手法がアンサンブルモデルの性能を高めることを示唆する。
関連論文リスト
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - A Distributionally Robust Optimisation Approach to Fair Credit Scoring [2.8851756275902467]
クレジットスコアリングは、欧州委員会と米国大統領の執行部によって、リスクの高い分類タスクとしてカタログ化されている。
この懸念に対処するため、近年の信用スコアリング研究は、公平性向上技術の範囲を検討した。
論文 参考訳(メタデータ) (2024-02-02T11:43:59Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Machine Learning Models Evaluation and Feature Importance Analysis on
NPL Dataset [0.0]
エチオピアのプライベートバンクが提供するデータセット上で、異なる機械学習モデルがどのように機能するかを評価する。
XGBoostは、KMeans SMOTEオーバーサンプリングデータ上で最高F1スコアを達成する。
論文 参考訳(メタデータ) (2022-08-28T17:09:44Z) - Selective Credit Assignment [57.41789233550586]
選択的クレジット代入のための時間差アルゴリズムについて統一的な視点を述べる。
価値に基づく学習と計画アルゴリズムへの重み付けの適用に関する洞察を提供する。
論文 参考訳(メタデータ) (2022-02-20T00:07:57Z) - Predicting Credit Risk for Unsecured Lending: A Machine Learning
Approach [0.0]
本研究は、無担保貸付(クレディットカード)の信用デフォルトを予測するための、同時代の信用評価モデルを構築することを目的とする。
本研究は,光グラディエントブースティングマシン(LGBM)モデルにより,学習速度の向上,効率の向上,データボリュームの大規模化を実現していることを示す。
このモデルの導入により、商業融資機関や銀行の意思決定者に対する信用デフォルトのより良いタイムリーな予測が可能になると期待している。
論文 参考訳(メタデータ) (2021-10-05T17:54:56Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
クレジットスコアリングデータセットの不均衡の性質と、クレジットスコアリングデータセットの特徴の不均一性は、効果的なクレジットスコアリングモデルの開発と実装に困難をもたらす。
本稿では,主にスーパービジョンオートエンコーダの性能を活かしたBaging Supervised Autoencoder (BSAC)を提案する。
BSACはまた、過半数クラスのアンサンプに基づいて、Bagingプロセスの変種を採用することで、データ不均衡の問題にも対処する。
論文 参考訳(メタデータ) (2021-08-12T17:49:08Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models [0.0]
本稿では,ガウス混合モデルに基づく新たなクレジットスコアリング手法を提案する。
我々のアルゴリズムは、消費者を正または負とラベル付けされたグループに分類する。
我々は,オーストラリア,日本,ドイツの実世界のデータベースにモデルを適用した。
論文 参考訳(メタデータ) (2020-10-26T07:34:27Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。