論文の概要: A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models
- arxiv url: http://arxiv.org/abs/2010.13388v1
- Date: Mon, 26 Oct 2020 07:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 18:13:33.924211
- Title: A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models
- Title(参考訳): ガウス混合モデルに基づくクレジット・スコーリングの新しい分類法
- Authors: Hamidreza Arian, Seyed Mohammad Sina Seyfi, Azin Sharifi
- Abstract要約: 本稿では,ガウス混合モデルに基づく新たなクレジットスコアリング手法を提案する。
我々のアルゴリズムは、消費者を正または負とラベル付けされたグループに分類する。
我々は,オーストラリア,日本,ドイツの実世界のデータベースにモデルを適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credit scoring is a rapidly expanding analytical technique used by banks and
other financial institutions. Academic studies on credit scoring provide a
range of classification techniques used to differentiate between good and bad
borrowers. The main contribution of this paper is to introduce a new method for
credit scoring based on Gaussian Mixture Models. Our algorithm classifies
consumers into groups which are labeled as positive or negative. Labels are
estimated according to the probability associated with each class. We apply our
model with real world databases from Australia, Japan, and Germany. Numerical
results show that not only our model's performance is comparable to others, but
also its flexibility avoids over-fitting even in the absence of standard cross
validation techniques. The framework developed by this paper can provide a
computationally efficient and powerful tool for assessment of consumer default
risk in related financial institutions.
- Abstract(参考訳): 信用スコアリング(Credit score)は、銀行やその他の金融機関が急速に普及する分析手法である。
クレジットスコアリングに関する学術研究は、良い借り手と悪い借り手の区別に使われる分類技術を提供する。
本研究の主な貢献は,ガウス混合モデルに基づく新たなクレジットスコアリング手法の導入である。
本アルゴリズムは消費者を正または負の分類群に分類する。
ラベルは各クラスに関連する確率に応じて推定される。
我々は,オーストラリア,日本,ドイツの実世界のデータベースにモデルを適用した。
数値的な結果から,我々のモデルの性能は他のモデルに匹敵するだけでなく,標準クロス検証技術がない場合でも過剰フィッティングを回避できることがわかった。
本稿では,関連金融機関における消費者のデフォルトリスクを評価するための,計算効率が高く強力なツールを提供する。
関連論文リスト
- Enhanced Credit Score Prediction Using Ensemble Deep Learning Model [12.85570952381681]
本稿では,現代銀行システムですでに広く利用されているXGBoostやLightGBMのような高性能モデルと,強力なTabNetモデルを組み合わせる。
我々は、ランダムフォレスト、XGBoost、TabNetを統合し、アンサンブルモデリングにおける積み重ね手法により、クレジットスコアレベルを正確に決定できる強力なモデルを開発した。
論文 参考訳(メタデータ) (2024-09-30T21:56:16Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z) - Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation [9.75150920742607]
フィンテックの貸与は、財政的包摂の促進に重要な役割を果たしてきた。
ローン審査中にアルゴリズムによる意思決定にバイアスがかかる可能性があるという懸念がある。
自己教師付きコントラスト学習とドメイン適応を用いたトランスフォーマーに基づくシーケンシャルローンスクリーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-05-10T01:11:35Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - On the combination of graph data for assessing thin-file borrowers'
creditworthiness [0.0]
複数のグラフ表現学習手法をブレンドすることで信用スコアリングモデルを改善する枠組みを導入する。
我々はこの枠組みを,ラテンアメリカの人口全体の関係と信用履歴を特徴付けるユニークなデータセットを用いて検証した。
利回りがはるかに高いコーポレート融資では、非銀行企業の評価が単にその特徴を考慮できないことを確認している。
論文 参考訳(メタデータ) (2021-11-26T18:45:23Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
クレジットスコアリングデータセットの不均衡の性質と、クレジットスコアリングデータセットの特徴の不均一性は、効果的なクレジットスコアリングモデルの開発と実装に困難をもたらす。
本稿では,主にスーパービジョンオートエンコーダの性能を活かしたBaging Supervised Autoencoder (BSAC)を提案する。
BSACはまた、過半数クラスのアンサンプに基づいて、Bagingプロセスの変種を採用することで、データ不均衡の問題にも対処する。
論文 参考訳(メタデータ) (2021-08-12T17:49:08Z) - Robustness Gym: Unifying the NLP Evaluation Landscape [91.80175115162218]
ディープニューラルネットワークは、現実のシステムにデプロイすると脆くなることが多い。
最近の研究は、そのようなモデルの堅牢性をテストすることに重点を置いている。
単純かつ評価可能なツールキットであるRobustness Gymの形で解を提案する。
論文 参考訳(メタデータ) (2021-01-13T02:37:54Z) - Dynamic Ensemble Learning for Credit Scoring: A Comparative Study [3.6503610360564687]
本研究では、アンサンブル学習モデルの様々な動的選択手法をベンチマークし、大規模かつ高次元のリアルタイムクレジットスコアリングデータセット上でのクレジットスコアリングタスクを正確に推定する。
本研究の結果から,特にバランスの取れない訓練環境において,動的選択手法によりアンサンブルモデルの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-10-18T07:06:02Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
従来の官僚データとは対照的に、アプリベースのマーケットプレースから派生した代替データが信用スコアモデルに与える影響を提示する。
2つの国にまたがって検証した結果、これらの新たなデータソースは、低体重者や若年者における金融行動を予測するのに特に有用であることが示された。
論文 参考訳(メタデータ) (2020-05-09T01:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。