論文の概要: An experimental study on fairness-aware machine learning for credit scoring problem
- arxiv url: http://arxiv.org/abs/2412.20298v1
- Date: Sat, 28 Dec 2024 23:27:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:29.658193
- Title: An experimental study on fairness-aware machine learning for credit scoring problem
- Title(参考訳): 信用スコアリング問題に対する公平性を考慮した機械学習の実験的検討
- Authors: Huyen Giang Thi Thu, Thang Viet Doan, Tai Le Quy,
- Abstract要約: 本稿では,信用スコアリングにおける公平性を考慮した機械学習の総合的研究について述べる。
この研究では、財務データセット、予測モデル、公正度測定など、信用スコアの重要な側面について調査している。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License:
- Abstract: Digitalization of credit scoring is an essential requirement for financial organizations and commercial banks, especially in the context of digital transformation. Machine learning techniques are commonly used to evaluate customers' creditworthiness. However, the predicted outcomes of machine learning models can be biased toward protected attributes, such as race or gender. Numerous fairness-aware machine learning models and fairness measures have been proposed. Nevertheless, their performance in the context of credit scoring has not been thoroughly investigated. In this paper, we present a comprehensive experimental study of fairness-aware machine learning in credit scoring. The study explores key aspects of credit scoring, including financial datasets, predictive models, and fairness measures. We also provide a detailed evaluation of fairness-aware predictive models and fairness measures on widely used financial datasets.
- Abstract(参考訳): 信用スコアのデジタル化は、特にデジタルトランスフォーメーションの文脈において、金融機関や商業銀行にとって必須の要件である。
マシンラーニング技術は、顧客の信用度を評価するために一般的に使用される。
しかし、機械学習モデルの予測結果は、人種や性別などの保護された属性に偏りがある。
多くのフェアネスを考慮した機械学習モデルとフェアネス対策が提案されている。
それにもかかわらず、クレジットスコアリングの文脈での彼らのパフォーマンスは、十分に調査されていない。
本稿では,クレジットスコアリングにおける公平性を考慮した機械学習の総合的研究について述べる。
この研究では、財務データセット、予測モデル、公正度測定など、信用スコアの重要な側面について調査している。
また、広く使われている金融データセットの公平性を考慮した予測モデルと公正度尺度の詳細な評価を行う。
関連論文リスト
- Best Practices for Responsible Machine Learning in Credit Scoring [0.03984353141309896]
本チュートリアルでは、クレジットスコアリングにおいて、責任ある機械学習モデルを開発するためのベストプラクティスを導くために、非体系的な文献レビューを行った。
我々は、偏見を緩和し、異なるグループ間で公平な結果を確保するための定義、メトリクス、技術について議論する。
これらのベストプラクティスを採用することで、金融機関は倫理的かつ責任ある融資プラクティスを維持しながら、機械学習の力を利用することができる。
論文 参考訳(メタデータ) (2024-09-30T17:39:38Z) - Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias [0.0]
本研究では,データ拡張に伴う対実的公正性に着目した高度なバイアス緩和手法について検討する。
この研究は、これらの統合アプローチが金融業界、特にローン承認手続きにおけるジェンダーバイアスを緩和する方法について考察している。
論文 参考訳(メタデータ) (2024-08-27T14:28:06Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation [9.75150920742607]
フィンテックの貸与は、財政的包摂の促進に重要な役割を果たしてきた。
ローン審査中にアルゴリズムによる意思決定にバイアスがかかる可能性があるという懸念がある。
自己教師付きコントラスト学習とドメイン適応を用いたトランスフォーマーに基づくシーケンシャルローンスクリーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-05-10T01:11:35Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Insights into Fairness through Trust: Multi-scale Trust Quantification
for Financial Deep Learning [94.65749466106664]
金融深層学習において探求されていない公平性の基本的な側面は、信頼の概念である。
クレジットカードのデフォルト予測のために,ディープニューラルネットワーク上でマルチスケール信頼度定量化を行う。
論文 参考訳(メタデータ) (2020-11-03T19:05:07Z) - A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models [0.0]
本稿では,ガウス混合モデルに基づく新たなクレジットスコアリング手法を提案する。
我々のアルゴリズムは、消費者を正または負とラベル付けされたグループに分類する。
我々は,オーストラリア,日本,ドイツの実世界のデータベースにモデルを適用した。
論文 参考訳(メタデータ) (2020-10-26T07:34:27Z) - Transparency, Auditability and eXplainability of Machine Learning Models
in Credit Scoring [4.370097023410272]
本稿では,信用スコアリングモデルを理解しやすくするために考慮すべきさまざまな次元について検討する。
本稿では,クレジットスコアにどのように適用できるか,そしてスコアカードの解釈可能性と比較する方法について概説する。
論文 参考訳(メタデータ) (2020-09-28T15:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。