論文の概要: Generalizable Information Theoretic Causal Representation
- arxiv url: http://arxiv.org/abs/2202.08388v1
- Date: Thu, 17 Feb 2022 00:38:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 15:13:39.417412
- Title: Generalizable Information Theoretic Causal Representation
- Title(参考訳): 一般化可能な情報理論因果表現
- Authors: Mengyue Yang, Xinyu Cai, Furui Liu, Xu Chen, Zhitang Chen, Jianye Hao,
Jun Wang
- Abstract要約: 本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
- 参考スコア(独自算出の注目度): 37.54158138447033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is evidence that representation learning can improve model's performance
over multiple downstream tasks in many real-world scenarios, such as image
classification and recommender systems. Existing learning approaches rely on
establishing the correlation (or its proxy) between features and the downstream
task (labels), which typically results in a representation containing cause,
effect and spurious correlated variables of the label. Its generalizability may
deteriorate because of the unstability of the non-causal parts. In this paper,
we propose to learn causal representation from observational data by
regularizing the learning procedure with mutual information measures according
to our hypothetical causal graph. The optimization involves a counterfactual
loss, based on which we deduce a theoretical guarantee that the
causality-inspired learning is with reduced sample complexity and better
generalization ability. Extensive experiments show that the models trained on
causal representations learned by our approach is robust under adversarial
attacks and distribution shift.
- Abstract(参考訳): 表現学習は、画像分類やレコメンダシステムなど、多くの実世界のシナリオにおいて、複数のダウンストリームタスクに対するモデルのパフォーマンスを向上させることができる。
既存の学習アプローチは、特徴と下流タスク(ラベル)の間の相関(あるいはそのプロキシ)を確立することに依存しており、通常はラベルの原因、効果、刺激的な相関変数を含む表現をもたらす。
非因果部分の不安定性のため、その一般化性は低下する可能性がある。
本稿では,観測データから因果表現を学習するために,仮説的因果グラフに基づいて相互情報測度で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反事実損失を含む。
広範な実験により,提案手法で学習した因果表現に基づくモデルが,敵対的攻撃と分布シフト下で頑健であることが判明した。
関連論文リスト
- Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
データ生成プロセスにおける因果関係を記述するために,構造因果モデル(SCM)を構築した。
さらに、スプリアス相関に基づくメカニズムを徹底的に分析する。
そこで本研究では,OOD一般化における共起バイアスの制御について,相対性スコア重み付き推定器を導入して提案する。
論文 参考訳(メタデータ) (2024-06-17T13:22:00Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
観測から純粋に表現を学習することは、予測モデルに有利な低次元のコンパクトな表現を学習する問題を懸念する。
本研究では,観測データからこのような表現を学習するための学習手法を開発した。
理論的および実験的に、学習された因果表現で訓練されたモデルは、敵の攻撃や分布シフトの下でより堅牢であることを示す。
論文 参考訳(メタデータ) (2023-10-21T02:18:35Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
因果表現学習(Causal representation learning)は、データセットの変動の要因は、実際には因果関係にあると主張している。
本稿では,遅延付加雑音モデルを用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-11T18:12:05Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Causal Transportability for Visual Recognition [70.13627281087325]
画像とラベルの関連性は、設定間では転送できないため、標準分類器がフェールすることを示す。
次に、すべての共起源を摂食する因果効果が、ドメイン間で不変であることを示す。
これにより、画像分類における因果効果を推定するアルゴリズムを開発する動機付けとなる。
論文 参考訳(メタデータ) (2022-04-26T15:02:11Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Counterfactual Adversarial Learning with Representation Interpolation [11.843735677432166]
本稿では,逆境因果関係の観点から問題に取り組むために,対人関係訓練の枠組みを導入する。
実験により、CATは異なる下流タスク間でSOTAよりも大幅にパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2021-09-10T09:23:08Z) - A Meta Learning Approach to Discerning Causal Graph Structure [1.52292571922932]
分布の単純度を最適化することにより,変数間の因果方向を導出するためのメタラーニングの活用について検討する。
潜在変数を含むグラフ表現を導入し、より一般化性とグラフ構造表現を可能にする。
我々のモデルは、潜在共同設立者の影響にもかかわらず、複雑なグラフ構造の因果方向インジケータを学習することができる。
論文 参考訳(メタデータ) (2021-06-06T22:44:44Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。