論文の概要: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models
Robust with Little Cost
- arxiv url: http://arxiv.org/abs/2203.07860v1
- Date: Tue, 15 Mar 2022 13:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 22:43:07.295243
- Title: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models
Robust with Little Cost
- Title(参考訳): LOVEによる語彙外埋め込みの導入による言語モデルのロバスト化
- Authors: Lihu Chen and Ga\"el Varoquaux and Fabian M. Suchanek
- Abstract要約: 最先端のNLPシステムは、単語埋め込みを伴う入力を表すが、外語彙の単語に直面すると、これらは不安定である。
我々は,単語の表面形のみを用いて事前学習した埋め込みの挙動を学習することにより,未知語に対するベクトルを生成するための模倣様モデルの原理に従う。
本稿では,既存の事前学習型言語モデル(BERTなど)の単語表現を拡張したシンプルなコントラスト学習フレームワークLOVEを提案する。
- 参考スコア(独自算出の注目度): 5.672132510411465
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: State-of-the-art NLP systems represent inputs with word embeddings, but these
are brittle when faced with Out-of-Vocabulary (OOV) words. To address this
issue, we follow the principle of mimick-like models to generate vectors for
unseen words, by learning the behavior of pre-trained embeddings using only the
surface form of words. We present a simple contrastive learning framework,
LOVE, which extends the word representation of an existing pre-trained language
model (such as BERT), and makes it robust to OOV with few additional
parameters. Extensive evaluations demonstrate that our lightweight model
achieves similar or even better performances than prior competitors, both on
original datasets and on corrupted variants. Moreover, it can be used in a
plug-and-play fashion with FastText and BERT, where it significantly improves
their robustness.
- Abstract(参考訳): 最先端のNLPシステムは単語埋め込みを持つ入力を表すが、外語彙(OOV)の単語に直面すると不安定である。
この問題に対処するために,単語の表面形式のみを用いて事前学習した埋め込みの挙動を学習することにより,未知の単語に対してベクトルを生成するミメク様モデルの原理に従う。
本稿では,既存の事前学習言語モデル(BERTなど)の単語表現を拡張したシンプルなコントラスト学習フレームワークLOVEを提案する。
広範な評価によって、当社の軽量モデルは、オリジナルのデータセットと破損した派生データの両方において、以前の競合製品と同等あるいはそれ以上のパフォーマンスを達成しています。
さらに、FastTextやBERTでプラグイン・アンド・プレイで使用することで、堅牢性を大幅に向上させることができる。
関連論文リスト
- Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - Exploiting Word Semantics to Enrich Character Representations of Chinese
Pre-trained Models [12.0190584907439]
本稿では,単語構造を利用して語彙意味を事前学習したモデルの文字表現に統合する手法を提案する。
提案手法は,中国の異なるNLPタスクにおけるBERT,BERT-wwm,ERNIEよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-07-13T02:28:08Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
提案手法はCBOWをベースとした簡易な蒸留法である。
副作用として、我々の手法は文脈的および静的な埋め込みの公正な比較を可能にする。
論文 参考訳(メタデータ) (2021-06-08T12:59:32Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
本稿では,言語知識を単語埋め込みの形で,事前学習したBERTに明示的に注入する手法を提案する。
依存性ベースと逆適合の埋め込みを注入する場合、複数のセマンティックな類似性データセットのパフォーマンス改善は、そのような情報が有益であり、現在元のモデルから欠落していることを示している。
論文 参考訳(メタデータ) (2020-10-23T17:00:26Z) - Word Shape Matters: Robust Machine Translation with Visual Embedding [78.96234298075389]
文字レベルNLPモデルの入力シンボルを新たに符号化する。
文字が印刷されたときの画像を通して各文字の形状をエンコードする。
我々はこの新たな戦略を視覚的埋め込みと呼び、NLPモデルの堅牢性を向上させることが期待されている。
論文 参考訳(メタデータ) (2020-10-20T04:08:03Z) - Multiple Word Embeddings for Increased Diversity of Representation [15.279850826041066]
本稿では,実行時間の増加を無視できるような,強いベースライン上での性能を実質的に一貫的に向上させる手法を示す。
我々は、事前学習した埋め込み類似性と語彙被覆の側面を分析し、表現多様性がなぜこの技術が機能するかの原動力であることを見出した。
論文 参考訳(メタデータ) (2020-09-30T02:33:09Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Attention Word Embedding [23.997145283950346]
本稿では,アテンションワード埋め込み(AWE)モデルを紹介し,アテンションメカニズムをCBOWモデルに統合する。
また,サブワード情報を組み込んだAWE-Sを提案する。
AWEとAWE-Sは、様々な単語類似性データセット上で、最先端の単語埋め込みモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-01T14:47:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。