論文の概要: Quality of service based radar resource management using deep
reinforcement learning
- arxiv url: http://arxiv.org/abs/2010.10210v1
- Date: Tue, 20 Oct 2020 11:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:59:09.618460
- Title: Quality of service based radar resource management using deep
reinforcement learning
- Title(参考訳): 深層強化学習を用いたサービスベースレーダ資源管理の質
- Authors: Sebastian Durst and Stefan Br\"uggenwirth
- Abstract要約: サービスベースのリソース割り当てモデル(Q-RAM)の品質は、インテリジェントな意思決定を可能にするフレームワークです。
深部強化学習を用いたQ-RAMレーダ資源管理問題の解法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An intelligent radar resource management is an essential milestone in the
development of a cognitive radar system. The quality of service based resource
allocation model (Q-RAM) is a framework allowing for intelligent decision
making but classical solutions seem insufficient for real-time application in a
modern radar system. In this paper, we present a solution for the Q-RAM radar
resource management problem using deep reinforcement learning considerably
improving on runtime performance.
- Abstract(参考訳): インテリジェントレーダー資源管理は、認知レーダーシステムの開発において重要なマイルストーンである。
q-ram(quality of service based resource allocation model)は、インテリジェントな意思決定を可能にするフレームワークだが、現代のレーダーシステムでは、従来のソリューションではリアルタイムアプリケーションでは不十分である。
本稿では,高次強化学習を用いたq-ramレーダ資源管理問題の解法を提案する。
関連論文リスト
- Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance [6.784861785632841]
本研究では,1次元(1次元)信号の超解像スペクトル推定問題として,レーダー画像の超解像を再定義する。
自動車レーダイメージングのための最適化されたディープラーニングネットワークは、優れたスケーラビリティ、パラメータ効率、高速推論速度を示す。
我々のSR-SPECNetは、高解像度のレーダレンジ方位画像を作成するための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-06-11T16:07:08Z) - Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar
Data Processing [4.359030177348051]
本稿では,ストリーミングレーダデータに存在する時間相関を利用して,組込みデバイス上でのディープラーニング推論のための早期排他ニューラルネットワークの効率を向上させる手法を提案する。
以上の結果から,提案手法は単一排他ネットワーク上での推論当たりの演算量の最大26%を削減し,信頼度に基づく早期排他バージョンで12%を削減できることがわかった。
このような効率向上により、リソース制約のあるプラットフォーム上でリアルタイムなレーダデータ処理が可能になり、スマートホーム、インターネット・オブ・シング、人間とコンピュータのインタラクションといったコンテキストにおける新しいアプリケーションが可能になる。
論文 参考訳(メタデータ) (2023-09-11T12:38:01Z) - A Systematic Study on Object Recognition Using Millimeter-wave Radar [1.3192560874022086]
ミリ波(MMW)レーダーはスマート環境において必須である。
MMWレーダーは高価で、コミュニティ向けのスマート環境アプリケーションでは入手が難しい。
これらの課題は、オブジェクトやアクティビティを認識するといったタスクについて調査する必要がある。
論文 参考訳(メタデータ) (2023-05-03T12:42:44Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
本稿では,無線ネットワークにおける資源管理問題を解決するためのステート拡張アルゴリズムを提案する。
提案アルゴリズムは, RRM決定を可能, ほぼ最適に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-05T18:02:54Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Coherent, super resolved radar beamforming using self-supervised
learning [0.0]
自己スーパービジョン(R2-S2)を用いたレーダ信号再構成は、物理チャネルの数を増やすことなく、所定のレーダアレイの角分解能を著しく向上させる。
R2-S2は、DNN(Deep Neural Network)と複雑なレンジドップラーレーダーデータを入力として使用し、自己教師された方法で訓練するアルゴリズムのファミリーである。
都市部と高速道路の環境下で収集した実世界のデータセットを用いて,角分解能の4倍の改善を実証した。
論文 参考訳(メタデータ) (2021-06-21T16:59:55Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
レーダは、他のシステムとの相互干渉を軽減するために、その線形周波数変調(LFM)波形の帯域幅と中心周波数を変化させることを学ぶ。
DQLベースのアプローチを拡張して、ダブルQ-ラーニングとリカレントニューラルネットワークを組み込んで、ダブルディープリカレントQ-ネットワークを形成する。
実験結果から,提案手法は集束スペクトル環境におけるレーダ検出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-06-23T17:21:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。