論文の概要: DocNet: Semantic Structure in Inductive Bias Detection Models
- arxiv url: http://arxiv.org/abs/2406.10965v2
- Date: Sun, 17 Nov 2024 17:30:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:28:44.493902
- Title: DocNet: Semantic Structure in Inductive Bias Detection Models
- Title(参考訳): DocNet:誘導バイアス検出モデルにおける意味構造
- Authors: Jessica Zhu, Iain Cruickshank, Michel Cukier,
- Abstract要約: 本稿では,文書におけるバイアス検出の見過ごされがちな側面として,ニュース記事の意味的構造について考察する。
本稿では,新しい,インダクティブで低リソースなドキュメント埋め込みとバイアス検出モデルであるDocNetを提案する。
また、文書レベルのグラフ埋め込みに代表される、対立するパルチザン側からのニュース記事のセマンティック構造が顕著に類似していることも示している。
- 参考スコア(独自算出の注目度): 0.4779196219827508
- License:
- Abstract: News will have biases so long as people have opinions. It is increasingly important for informed citizens to be able to identify bias as social media becomes the primary entry point for news and partisan differences increase. If people know the biases of the news they are consuming, they will be able to take action to avoid polarizing echo chambers. In this paper, we explore an often overlooked aspect of bias detection in documents: the semantic structure of news articles. We present DocNet, a novel, inductive, and low-resource document embedding and bias detection model that outperforms large language models. We also demonstrate that the semantic structure of news articles from opposing partisan sides, as represented in document-level graph embeddings, have significant similarities. These results can be used to advance bias detection in low-resource environments. Our code, data, and the corresponding datasheet are made available at: https://anonymous.4open.science/r/DocNet/.
- Abstract(参考訳): 人々が意見を持ってさえいれば、ニュースには偏見があるだろう。
ソーシャルメディアがニュースの第一の入り口となり、党派の違いが増すにつれて、情報市民が偏見を識別できることがますます重要になっている。
人々が消費しているニュースのバイアスを知っていれば、エコーチャンバーの分極を避けるために行動を起こすことができる。
本稿では,文書におけるバイアス検出の見過ごされがちな側面として,ニュース記事の意味的構造について考察する。
本稿では,大規模言語モデルより優れた文書埋め込みとバイアス検出モデルであるDocNetを提案する。
また、文書レベルのグラフ埋め込みに代表される、対立するパルチザン側からのニュース記事のセマンティック構造が顕著に類似していることも示している。
これらの結果は,低リソース環境におけるバイアス検出の進展に有効である。
私たちのコード、データ、および対応するデータシートは、https://anonymous.4open.science/r/DocNet/で利用可能です。
関連論文リスト
- It's All Relative: Interpretable Models for Scoring Bias in Documents [10.678219157857946]
本稿では,テキストコンテンツのみに基づいて,Webドキュメントに存在するバイアスを評価するための解釈可能なモデルを提案する。
我々のモデルはBradley-Terryの公理を思わせる仮定を取り入れ、同じウィキペディアの記事の2つの修正に基づいて訓練されている。
我々は、訓練されたモデルのパラメータを解釈して、最も偏りを示す単語を見つけることができることを示す。
論文 参考訳(メタデータ) (2023-07-16T19:35:38Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Towards Measuring Bias in Image Classification [61.802949761385]
畳み込みニューラルネットワーク(CNN)は、主要なコンピュータビジョンタスクの最先端技術となっている。
しかし、複雑な構造のため、その決定は産業世界の何らかの文脈での使用を制限するかを理解することは困難である。
帰属マップによるデータのバイアスを明らかにするための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-01T10:50:39Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
フェイクニュース」の時代には、ニュース記事のスラントと信頼性を知ることが極めて重要である。
我々はNewsalyzeを紹介します。Newsalyzeは、言葉の選択とラベル付け(WCL)という、微妙で強力なメディアバイアスに焦点をあてたバイアス対応ニュースリーダーです。
WCLバイアスは、ニュースで報告された「フリーダム・ファイター」対「テロリスト」の評価を変えることができる。
論文 参考訳(メタデータ) (2021-05-20T11:20:37Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
我々は,adfontesmedia.comから派生したラベル付き6964ニュース記事の新しいコーパスを活用し,バイアス評価のためのニューラルモデルを開発した。
論文 参考訳(メタデータ) (2020-10-20T22:25:00Z) - Detecting Media Bias in News Articles using Gaussian Bias Distributions [35.19976910093135]
本稿では,記事中の偏りのある文の2次情報がどのように検出効率を向上させるかを検討する。
既存のメディアバイアスデータセットでは、偏りのある文の頻度と位置が記事レベルの偏りに強く影響していることが分かる。
文レベルの偏差検出の標準モデルを用いて,2次情報を用いた記事レベルの偏差検出器が,それ無しで明らかに優れていることを示す実証的証拠を提供する。
論文 参考訳(メタデータ) (2020-10-20T22:20:49Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
公開されている言語モデルは、入力されたオリジナルニュースに基づいてバイアスのあるニュースコンテンツを確実に生成できることを示す。
また、制御可能なテキスト生成を用いて、多数の高品質な偏りのあるニュース記事を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-05T16:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。