Analyzing the Source and Target Contributions to Predictions in Neural
Machine Translation
- URL: http://arxiv.org/abs/2010.10907v3
- Date: Fri, 25 Jun 2021 14:32:12 GMT
- Title: Analyzing the Source and Target Contributions to Predictions in Neural
Machine Translation
- Authors: Elena Voita, Rico Sennrich, Ivan Titov
- Abstract summary: We analyze NMT models which explicitly evaluates the source and target relative contributions to the generation process.
We find that models trained with more data tend to rely on source information more and to have more sharp token contributions.
- Score: 97.22768624862111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Neural Machine Translation (and, more generally, conditional language
modeling), the generation of a target token is influenced by two types of
context: the source and the prefix of the target sequence. While many attempts
to understand the internal workings of NMT models have been made, none of them
explicitly evaluates relative source and target contributions to a generation
decision. We argue that this relative contribution can be evaluated by adopting
a variant of Layerwise Relevance Propagation (LRP). Its underlying
'conservation principle' makes relevance propagation unique: differently from
other methods, it evaluates not an abstract quantity reflecting token
importance, but the proportion of each token's influence. We extend LRP to the
Transformer and conduct an analysis of NMT models which explicitly evaluates
the source and target relative contributions to the generation process. We
analyze changes in these contributions when conditioning on different types of
prefixes, when varying the training objective or the amount of training data,
and during the training process. We find that models trained with more data
tend to rely on source information more and to have more sharp token
contributions; the training process is non-monotonic with several stages of
different nature.
Related papers
- The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
We show that specific distributional properties inherent in language control the trade-off or simultaneous appearance of two forms of learning.
In-context learning is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning.
We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL.
arXiv Detail & Related papers (2023-12-03T20:53:41Z) - Latent State Models of Training Dynamics [51.88132043461152]
We train models with different random seeds and compute a variety of metrics throughout training.
We then fit a hidden Markov model (HMM) over the resulting sequences of metrics.
We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.
arXiv Detail & Related papers (2023-08-18T13:20:08Z) - Comparative layer-wise analysis of self-supervised speech models [29.258085176788097]
We measure acoustic, phonetic, and word-level properties encoded in individual layers, using a lightweight analysis tool based on canonical correlation analysis (CCA)
We find that these properties evolve across layers differently depending on the model, and the variations relate to the choice of pre-training objective.
We discover that CCA trends provide reliable guidance to choose layers of interest for downstream tasks and that single-layer performance often matches or improves upon using all layers, suggesting implications for more efficient use of pre-trained models.
arXiv Detail & Related papers (2022-11-08T00:59:05Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Bridging the Data Gap between Training and Inference for Unsupervised
Neural Machine Translation [49.916963624249355]
A UNMT model is trained on the pseudo parallel data with translated source, and natural source sentences in inference.
The source discrepancy between training and inference hinders the translation performance of UNMT models.
We propose an online self-training approach, which simultaneously uses the pseudo parallel data natural source, translated target to mimic the inference scenario.
arXiv Detail & Related papers (2022-03-16T04:50:27Z) - The Grammar-Learning Trajectories of Neural Language Models [42.32479280480742]
We show that neural language models acquire linguistic phenomena in a similar order, despite having different end performances over the data.
Results suggest that NLMs exhibit consistent developmental'' stages.
arXiv Detail & Related papers (2021-09-13T16:17:23Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications.
It builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time.
This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information.
It is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime
arXiv Detail & Related papers (2021-09-03T14:29:20Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.