論文の概要: Density of States Graph Kernels
- arxiv url: http://arxiv.org/abs/2010.11341v3
- Date: Wed, 20 Jan 2021 13:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 01:18:50.593275
- Title: Density of States Graph Kernels
- Title(参考訳): 状態グラフ核の密度
- Authors: Leo Huang, Andrew Graven, David Bindel
- Abstract要約: グラフカーネルはグラフ間の類似性を定量化する確立された技術である。
より一般的な状態密度の枠組みの下でランダムウォークカーネルをリキャストする。
我々は、状態ベースのグラフカーネルのスケーラブルで複合的な密度を構築するために、我々の解釈を利用する。
- 参考スコア(独自算出の注目度): 10.200937444995944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem on graph-structured data is that of quantifying
similarity between graphs. Graph kernels are an established technique for such
tasks; in particular, those based on random walks and return probabilities have
proven to be effective in wide-ranging applications, from bioinformatics to
social networks to computer vision. However, random walk kernels generally
suffer from slowness and tottering, an effect which causes walks to
overemphasize local graph topology, undercutting the importance of global
structure. To correct for these issues, we recast return probability graph
kernels under the more general framework of density of states -- a framework
which uses the lens of spectral analysis to uncover graph motifs and properties
hidden within the interior of the spectrum -- and use our interpretation to
construct scalable, composite density of states based graph kernels which
balance local and global information, leading to higher classification
accuracies on a host of benchmark datasets.
- Abstract(参考訳): グラフ構造化データの根本的な問題は、グラフ間の類似性を定量化することである。
グラフカーネルはそのようなタスクのための確立された技術であり、特に、ランダムウォークとリターン確率に基づくものは、バイオインフォマティクスからソーシャルネットワーク、コンピュータビジョンまで幅広い応用に有効であることが証明されている。
しかし、ランダムウォークカーネルは一般的に、局所グラフトポロジーを過度に強調し、グローバルな構造の重要性を減らし、遅さとトータリングに悩まされる。
これらの問題を正すため、より一般的な状態密度の枠組み(スペクトル分析のレンズを使ってスペクトルの内部に隠されたモチーフや特性を明らかにするフレームワーク)の下で戻り確率グラフカーネルを再キャストし、この解釈を用いて、局所的およびグローバルな情報のバランスをとる状態ベースのグラフカーネルのスケーラブルで複合的な密度を構築し、ベンチマークデータセットのホストにおける分類精度を高める。
関連論文リスト
- Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Topological Pooling on Graphs [24.584372324701885]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ学習タスクにおいて大きな成功を収めている。
そこで我々は,新しいトポロジカルプール層とビジター複合型トポロジカル埋め込み機構を提案する。
Wit-TopoPoolは、すべてのデータセットで競合他社よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-03-25T19:30:46Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Graph Pooling with Maximum-Weight $k$-Independent Sets [12.251091325930837]
最大ウェイト$k$非依存集合のグラフ理論的概念に基づくグラフ粗化機構を導入する。
我々は、経路長の歪み境界の理論的保証と、粗化グラフにおける重要な位相特性を保存できることを証明した。
論文 参考訳(メタデータ) (2022-08-06T14:12:47Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
本稿では,空間領域とスペクトル領域の両方にメッセージパッシングを適用するSpectral Graph Networkを紹介する。
その結果,spectrum gnは効率のよいトレーニングを促進し,より多くのパラメータを持つにもかかわらず,少ないトレーニングイテレーションで高いパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T21:33:17Z) - Graphs, Entities, and Step Mixture [11.162937043309478]
エッジベース近傍関係とノードベース実体特徴の両方を考慮した新しいグラフニューラルネットワークを提案する。
集約的な実験により,提案したGESMは,8つのベンチマークグラフデータセット上で,最先端または同等のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-05-18T06:57:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。