論文の概要: MinMax Methods for Optimal Transport and Beyond: Regularization,
Approximation and Numerics
- arxiv url: http://arxiv.org/abs/2010.11502v1
- Date: Thu, 22 Oct 2020 07:43:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 07:52:06.289091
- Title: MinMax Methods for Optimal Transport and Beyond: Regularization,
Approximation and Numerics
- Title(参考訳): MinMax法による最適輸送法--正規化・近似・数値化
- Authors: Luca De Gennaro Aquino, Stephan Eckstein
- Abstract要約: 理論的には、大きな問題のクラスを単一のMinMaxフレームワークに適合させることに重点を置いている。
このような問題を解決するために,正規化技術はニューラルネットワークの利用を正当化することを示す。
- 参考スコア(独自算出の注目度): 6.09170287691728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study MinMax solution methods for a general class of optimization problems
related to (and including) optimal transport. Theoretically, the focus is on
fitting a large class of problems into a single MinMax framework and
generalizing regularization techniques known from classical optimal transport.
We show that regularization techniques justify the utilization of neural
networks to solve such problems by proving approximation theorems and
illustrating fundamental issues if no regularization is used. We further study
the relation to the literature on generative adversarial nets, and analyze
which algorithmic techniques used therein are particularly suitable to the
class of problems studied in this paper. Several numerical experiments showcase
the generality of the setting and highlight which theoretical insights are most
beneficial in practice.
- Abstract(参考訳): 最適輸送に関連する最適化問題の一般クラスに対するMinMax解法について検討する。
理論的には、大きな問題のクラスを単一のminmaxフレームワークに適合させ、古典的最適輸送で知られている正規化技術を一般化することに焦点を当てている。
正規化手法は,近似定理を証明し,正規化を行なわない場合の基本問題を示すことにより,ニューラルネットワークの利用を正当化する。
さらに, 生成逆ネットに関する文献との関連について検討し, 本論文で研究されている問題の種類に特に適合するアルゴリズム手法について検討した。
いくつかの数値実験は、理論的な洞察が実際に最も有益である設定と強調の一般性を示している。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Scalable Uni-directional Pareto Optimality for Multi-Task Learning with
Constraints [4.4044968357361745]
制約下での最適化を含む多目的(MOO)問題に対するスケーラブルなMOOソルバを提案する。
この重要な応用は、ニューラル分類タスクの高次元ランタイムを推定することである。
論文 参考訳(メタデータ) (2021-10-28T21:35:59Z) - On Riemannian Approach for Constrained Optimization Model in Extreme
Classification Problems [2.7436792484073638]
制約付き最適化問題は行列多様体上の最適化問題として定式化される。
提案手法は,複数の実世界の大規模マルチラベルデータセットで検証される。
論文 参考訳(メタデータ) (2021-09-30T11:28:35Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Certificates of quantum many-body properties assisted by machine
learning [0.0]
本稿では,緩和技術の力と深層強化学習を組み合わせた新しい手法を提案する。
本研究は,多くの移動系の基底状態エネルギーを求める文脈において,本手法の生存可能性について述べる。
我々は、量子情報処理の分野における他の一般的な応用へのアプローチを一般化するためのツールを提供する。
論文 参考訳(メタデータ) (2021-03-05T17:47:26Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Non-convex Min-Max Optimization: Applications, Challenges, and Recent
Theoretical Advances [58.54078318403909]
min-max問題(英: min-max problem)またはサドル点問題(英: saddle point problem)は、サムゲームにおいても研究されるクラス逆問題である。
論文 参考訳(メタデータ) (2020-06-15T05:33:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。