論文の概要: Certificates of quantum many-body properties assisted by machine
learning
- arxiv url: http://arxiv.org/abs/2103.03830v1
- Date: Fri, 5 Mar 2021 17:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-08 23:59:18.326426
- Title: Certificates of quantum many-body properties assisted by machine
learning
- Title(参考訳): 機械学習による量子多体特性の証明
- Authors: Borja Requena, Gorka Mu\~noz-Gil, Maciej Lewenstein, Vedran Dunjko,
Jordi Tura
- Abstract要約: 本稿では,緩和技術の力と深層強化学習を組み合わせた新しい手法を提案する。
本研究は,多くの移動系の基底状態エネルギーを求める文脈において,本手法の生存可能性について述べる。
我々は、量子情報処理の分野における他の一般的な応用へのアプローチを一般化するためのツールを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computationally intractable tasks are often encountered in physics and
optimization. Such tasks often comprise a cost function to be optimized over a
so-called feasible set, which is specified by a set of constraints. This may
yield, in general, to difficult and non-convex optimization tasks. A number of
standard methods are used to tackle such problems: variational approaches focus
on parameterizing a subclass of solutions within the feasible set; in contrast,
relaxation techniques have been proposed to approximate it from outside, thus
complementing the variational approach by providing ultimate bounds to the
global optimal solution. In this work, we propose a novel approach combining
the power of relaxation techniques with deep reinforcement learning in order to
find the best possible bounds within a limited computational budget. We
illustrate the viability of the method in the context of finding the ground
state energy of many-body quantum systems, a paradigmatic problem in quantum
physics. We benchmark our approach against other classical optimization
algorithms such as breadth-first search or Monte-Carlo, and we characterize the
effect of transfer learning. We find the latter may be indicative of phase
transitions, with a completely autonomous approach. Finally, we provide tools
to generalize the approach to other common applications in the field of quantum
information processing.
- Abstract(参考訳): 計算的に難解なタスクは物理学や最適化でしばしば発生する。
このようなタスクは、しばしば、一連の制約によって特定されるいわゆる実現可能セットに対して最適化されるコスト関数を構成する。
これは一般に困難かつ非凸な最適化タスクに繋がる可能性がある。
変分的アプローチは、実現可能な集合内の解のサブクラスをパラメータ化することに焦点を当てており、対照的に、外からそれを近似するために緩和技術が提案されており、大域的最適解への究極的な境界を提供することで変分的アプローチを補完している。
本研究では,リラクゼーション手法のパワーと深層強化学習を組み合わせた新しい手法を提案する。
量子物理学におけるパラダイム問題である多体量子システムの基底状態エネルギーを求めるという文脈で、この手法の有効性を示す。
提案手法を,幅優先探索やモンテカルロ探索などの古典的最適化アルゴリズムと比較し,伝達学習の効果を特徴付ける。
後者は、完全に自律的なアプローチで、相転移を示す可能性がある。
最後に、量子情報処理の分野における他の一般的なアプリケーションへのアプローチを一般化するツールを提供する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Variational quantum algorithm for experimental photonic multiparameter
estimation [0.0]
ノイズの多い環境で動作している量子位相センサを効率よく最適化するための変分手法を開発した。
集積フォトニックデバイスの高再構成性を利用して、我々はハイブリッド量子古典フィードバックループを実装した。
実験結果から, 推定精度と雑音の頑健性に関して, 大幅な改善が得られた。
論文 参考訳(メタデータ) (2023-08-04T18:01:14Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
本稿では,モンテカルロ法を用いて解析的境界を時間複雑度に設定する変動量子アルゴリズムを提案する。
提案手法の有効性と,MaxCutインスタンスの量子回路シミュレーションによる解析の有効性を実証する。
論文 参考訳(メタデータ) (2021-12-03T23:03:44Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
我々は、成功の物理的メカニズムとアルゴリズム改善の導出の失敗を理解するために、グラフ上の運動エネルギーに関連する言語とツールの開発に重点を置いている。
これは、波動関数の閉じ込め、位相ランダム化、理想解から遠く離れた目標に潜む影欠陥の影響と関係している。
論文 参考訳(メタデータ) (2020-08-19T18:16:26Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。