論文の概要: Quiver Signal Processing (QSP)
- arxiv url: http://arxiv.org/abs/2010.11525v1
- Date: Thu, 22 Oct 2020 08:40:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 08:01:11.637521
- Title: Quiver Signal Processing (QSP)
- Title(参考訳): クイバー信号処理(qsp)
- Authors: Alejandro Parada-Mayorga, Hans Riess, Alejandro Ribeiro, and Robert
Ghrist
- Abstract要約: キーバー表現に関する信号処理フレームワークの基礎を述べる。
ネットワークにおける異種多次元情報を扱うための信号処理フレームワークを提案する。
- 参考スコア(独自算出の注目度): 145.6921439353007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we state the basics for a signal processing framework on quiver
representations. A quiver is a directed graph and a quiver representation is an
assignment of vector spaces to the nodes of the graph and of linear maps
between the vector spaces associated to the nodes. Leveraging the tools from
representation theory, we propose a signal processing framework that allows us
to handle heterogeneous multidimensional information in networks. We provide a
set of examples where this framework provides a natural set of tools to
understand apparently hidden structure in information. We remark that the
proposed framework states the basis for building graph neural networks where
information can be processed and handled in alternative ways.
- Abstract(参考訳): 本稿では,キーバー表現に基づく信号処理フレームワークの基礎について述べる。
quiver は有向グラフであり、quiver 表現はグラフのノードへのベクトル空間の割り当てであり、ノードに関連するベクトル空間間の線型写像である。
表現理論からツールを活用することで,ネットワーク上での不均一な多次元情報を処理できる信号処理フレームワークを提案する。
このフレームワークは、情報の隠された構造を理解するための自然なツールセットを提供します。
提案手法は,情報処理や処理を他の方法で行うことのできるグラフニューラルネットワーク構築の基礎を述べるものである。
関連論文リスト
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - Shortest Path Networks for Graph Property Prediction [13.986963122264632]
ほとんどのグラフニューラルネットワークモデルは、グラフのノード表現を直接近傍の各ノードに反復的に伝播するという、特定のメッセージパッシングパラダイムに依存している。
本稿では,最短経路近傍の各ノードにグラフのノード表現を伝搬する最短経路メッセージパッシングニューラルネットワークを提案する。
我々のフレームワークは、メッセージパッシングニューラルネットワークを一般化し、より表現力のあるモデルをもたらす。
論文 参考訳(メタデータ) (2022-06-02T12:04:29Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Signal Processing on Higher-Order Networks: Livin' on the Edge ... and
Beyond [20.422050836383725]
本稿では,高次ネットワーク上での信号処理の新たな話題の実践的扱いについて述べる。
単純複素体やハイパーグラフのデータを処理するためのビルディングブロックを紹介します。
論文 参考訳(メタデータ) (2021-01-14T09:08:26Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
我々はSqueeze Reasoningと呼ばれる新しいフレームワークを提案する。
空間地図上の情報を伝播するのではなく、まず入力特徴をチャネルワイドなグローバルベクトルに絞ることを学ぶ。
提案手法はエンドツーエンドのトレーニングブロックとしてモジュール化可能であり,既存のネットワークに簡単に接続可能であることを示す。
論文 参考訳(メタデータ) (2020-11-06T12:17:01Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
グラフ畳み込みネットワーク(GCN)はグラフデータの表現学習に広く利用されている。
多くのグラフ分類アプリケーションにおいて、GCNベースのアプローチは従来の手法よりも優れている。
グラフコンテキスト対応ノード表現を用いた局所性保存型高密度GCNを提案する。
論文 参考訳(メタデータ) (2020-10-12T02:12:27Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。