Defense-guided Transferable Adversarial Attacks
- URL: http://arxiv.org/abs/2010.11535v2
- Date: Wed, 4 Nov 2020 01:34:31 GMT
- Title: Defense-guided Transferable Adversarial Attacks
- Authors: Zifei Zhang, Kai Qiao, Jian Chen and Ningning Liang
- Abstract summary: adversarial examples are hard to transfer to unknown models.
We design a max-min framework inspired by input transformations, which are benificial to both the adversarial attack and defense.
Our method is expected to be a benchmark for assessing the robustness of deep models.
- Score: 5.2206166148727835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though deep neural networks perform challenging tasks excellently, they are
susceptible to adversarial examples, which mislead classifiers by applying
human-imperceptible perturbations on clean inputs. Under the query-free
black-box scenario, adversarial examples are hard to transfer to unknown
models, and several methods have been proposed with the low transferability. To
settle such issue, we design a max-min framework inspired by input
transformations, which are benificial to both the adversarial attack and
defense. Explicitly, we decrease loss values with inputs' affline
transformations as a defense in the minimum procedure, and then increase loss
values with the momentum iterative algorithm as an attack in the maximum
procedure. To further promote transferability, we determine transformed values
with the max-min theory. Extensive experiments on Imagenet demonstrate that our
defense-guided transferable attacks achieve impressive increase on
transferability. Experimentally, we show that our ASR of adversarial attack
reaches to 58.38% on average, which outperforms the state-of-the-art method by
12.1% on the normally trained models and by 11.13% on the adversarially trained
models. Additionally, we provide elucidative insights on the improvement of
transferability, and our method is expected to be a benchmark for assessing the
robustness of deep models.
Related papers
- Downstream Transfer Attack: Adversarial Attacks on Downstream Models with Pre-trained Vision Transformers [95.22517830759193]
This paper studies the transferability of such an adversarial vulnerability from a pre-trained ViT model to downstream tasks.
We show that DTA achieves an average attack success rate (ASR) exceeding 90%, surpassing existing methods by a huge margin.
arXiv Detail & Related papers (2024-08-03T08:07:03Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
Adversarial attacks can be used to assess the robustness of large visual-language models (VLMs)
Previous transfer-based adversarial attacks incur high costs due to high iteration counts and complex method structure.
We propose AdvDiffVLM, which uses diffusion models to generate natural, unrestricted and targeted adversarial examples.
arXiv Detail & Related papers (2024-04-16T07:19:52Z) - Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
adversarial examples generated under the white-box setting often exhibit low transferability across different models.
In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance.
Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability.
arXiv Detail & Related papers (2024-01-16T17:42:36Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
adversarial examples introduce imperceptible perturbations to benign samples, deceiving predictions.
Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving predictions.
We introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images.
arXiv Detail & Related papers (2023-11-18T09:10:07Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
We present a novel approach to generate transferable targeted adversarial examples.
We exploit the vulnerability of deep neural networks to perturbations on high-frequency components of images.
Our proposed approach significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T04:54:55Z) - Improving Adversarial Transferability with Scheduled Step Size and Dual
Example [33.00528131208799]
We show that transferability of adversarial examples generated by the iterative fast gradient sign method exhibits a decreasing trend when increasing the number of iterations.
We propose a novel strategy, which uses the Scheduled step size and the Dual example (SD) to fully utilize the adversarial information near the benign sample.
Our proposed strategy can be easily integrated with existing adversarial attack methods for better adversarial transferability.
arXiv Detail & Related papers (2023-01-30T15:13:46Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
Deep learning models are vulnerable to adversarial examples crafted by adding human-imperceptible perturbations on benign images.
Various momentum iterative gradient-based methods are shown to be effective to improve the adversarial transferability.
We propose an enhanced momentum iterative gradient-based method to further enhance the adversarial transferability.
arXiv Detail & Related papers (2021-03-19T03:10:32Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.