論文の概要: Genetic heterogeneity analysis using genetic algorithm and network
science
- arxiv url: http://arxiv.org/abs/2308.06429v1
- Date: Sat, 12 Aug 2023 01:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 17:21:05.565551
- Title: Genetic heterogeneity analysis using genetic algorithm and network
science
- Title(参考訳): 遺伝的アルゴリズムとネットワークサイエンスを用いた遺伝的多様性解析
- Authors: Zhendong Sha, Yuanzhu Chen, Ting Hu
- Abstract要約: ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
- 参考スコア(独自算出の注目度): 2.6166087473624318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Through genome-wide association studies (GWAS), disease susceptible genetic
variables can be identified by comparing the genetic data of individuals with
and without a specific disease. However, the discovery of these associations
poses a significant challenge due to genetic heterogeneity and feature
interactions. Genetic variables intertwined with these effects often exhibit
lower effect-size, and thus can be difficult to be detected using machine
learning feature selection methods. To address these challenges, this paper
introduces a novel feature selection mechanism for GWAS, named Feature
Co-selection Network (FCSNet). FCS-Net is designed to extract heterogeneous
subsets of genetic variables from a network constructed from multiple
independent feature selection runs based on a genetic algorithm (GA), an
evolutionary learning algorithm. We employ a non-linear machine learning
algorithm to detect feature interaction. We introduce the Community Risk Score
(CRS), a synthetic feature designed to quantify the collective disease
association of each variable subset. Our experiment showcases the effectiveness
of the utilized GA-based feature selection method in identifying feature
interactions through synthetic data analysis. Furthermore, we apply our novel
approach to a case-control colorectal cancer GWAS dataset. The resulting
synthetic features are then used to explain the genetic heterogeneity in an
additional case-only GWAS dataset.
- Abstract(参考訳): ゲノムワイド・アソシエーション研究(gwas)により、特定の疾患の有無に関わらず個人の遺伝データを比較することにより、疾患感受性遺伝子変数を同定することができる。
しかし、これらの結合の発見は、遺伝的不均一性や特徴的相互作用によって大きな課題を引き起こす。
これらの効果に絡み合う遺伝的変数は効果サイズが小さく、機械学習の特徴選択法を用いると検出が困難になる。
これらの課題に対処するため,本稿では,FCSNet(Feature Co-selection Network)という,GWASのための新しい特徴選択機構を提案する。
FCS-Netは、進化的学習アルゴリズムである遺伝的アルゴリズム(GA)に基づいて、複数の独立した特徴選択実行から構築されたネットワークから、遺伝的変数の不均一なサブセットを抽出するように設計されている。
特徴の相互作用を検出するために非線形機械学習アルゴリズムを用いる。
各変数の集団疾患関連を定量化するために設計された合成機能である community risk score (crs) を紹介する。
本実験は,合成データ解析による特徴量同定におけるGAを用いた特徴量選択法の有効性を示す。
さらに,症例制御型大腸癌GWASデータセットに新たなアプローチを適用した。
得られた合成特徴は、追加のケースのみのGWASデータセットで遺伝的不均一性を説明するために使用される。
関連論文リスト
- An Evolutional Neural Network Framework for Classification of Microarray Data [0.0]
本研究の目的は,遺伝的アルゴリズムとニューラルネットワークのハイブリッドモデルを用いて,情報的遺伝子のサブセット選択において問題を克服することである。
実験の結果,提案手法は,他の機械学習アルゴリズムと比較して,高い精度と最小数の選択遺伝子が示唆された。
論文 参考訳(メタデータ) (2024-11-20T13:48:40Z) - Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
複雑な疾患の遺伝的アーキテクチャを調べることは、遺伝的および環境要因の高度にポリジェニックでインタラクティブな景観のために困難である。
我々は、シミュレーションと実際のジェノタイプ/フェノタイプデータセットの両方を用いて、複雑な特性を予測するために、人工ニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Cancer-inspired Genomics Mapper Model for the Generation of Synthetic
DNA Sequences with Desired Genomics Signatures [0.0]
がんに触発されたゲノムマッパーモデル(CGMM)は、遺伝的アルゴリズム(GA)とディープラーニング(DL)の手法を組み合わせたものである。
我々はCGMMが、祖先や癌などの選択された表現型の合成ゲノムを生成できることを実証した。
論文 参考訳(メタデータ) (2023-05-01T07:16:40Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
本研究では、複雑な疾患の遺伝子データ解析のための予測型ニューラルネットワーク(ENN)法を開発した。
期待回帰と同様に、ERNは遺伝子変異と疾患の表現型との関係を包括的に把握する。
提案手法は,遺伝子変異と疾患表現型との間に複雑な関係がある場合,既存の予測回帰よりも優れていた。
論文 参考訳(メタデータ) (2020-10-26T21:07:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
本稿では, 遺伝的な遺伝的データセットを作成するために, gGAN (Generative Adversarial Networks) を導入する。
我々のゴールは、遺伝子プロファイルだけで病気の重篤な形態を発達させる新しい個人の正当性を決定することである。
提案モデルは自己認識型であり、ネットワークがトレーニングされたデータと十分に互換性のある新しい遺伝子プロファイルを決定することができる。
論文 参考訳(メタデータ) (2020-07-02T15:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。