論文の概要: Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games
- arxiv url: http://arxiv.org/abs/2010.11655v3
- Date: Fri, 25 Dec 2020 06:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 05:21:49.778094
- Title: Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games
- Title(参考訳): テキストゲームのための階層的重み付けによる深層強化学習
- Authors: Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, Chengqi
Zhang
- Abstract要約: 自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
- 参考スコア(独自算出の注目度): 64.11746320061965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study reinforcement learning (RL) for text-based games, which are
interactive simulations in the context of natural language. While different
methods have been developed to represent the environment information and
language actions, existing RL agents are not empowered with any reasoning
capabilities to deal with textual games. In this work, we aim to conduct
explicit reasoning with knowledge graphs for decision making, so that the
actions of an agent are generated and supported by an interpretable inference
procedure. We propose a stacked hierarchical attention mechanism to construct
an explicit representation of the reasoning process by exploiting the structure
of the knowledge graph. We extensively evaluate our method on a number of
man-made benchmark games, and the experimental results demonstrate that our
method performs better than existing text-based agents.
- Abstract(参考訳): 自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースのゲームに対する強化学習(RL)について検討する。
環境情報や言語行動を表現するために様々な方法が開発されているが、既存のRLエージェントにはテキストゲームを扱うための推論能力がない。
本研究では,エージェントの動作が解釈可能な推論手順によって生成されるように,意思決定のための知識グラフを用いた明示的な推論を行うことを目的とする。
知識グラフの構造を利用して推論過程の明示的な表現を構築するための階層型階層的注意機構を提案する。
提案手法を多数の人為的ベンチマークゲームで広く評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
関連論文リスト
- On the Effects of Fine-tuning Language Models for Text-Based Reinforcement Learning [19.057241328691077]
テキストベースRLエージェントの効率的な訓練には,意味理解の充実が寄与することを示す。
本稿では,言語モデルの不適切な微調整の結果,意味的変性の発生について述べる。
論文 参考訳(メタデータ) (2024-04-15T23:05:57Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
本稿では,汎用的な意味一般化とルール誘導システムを組み合わせて,解釈可能なルールをポリシーとして学習するモジュール型 NEuroSymbolic Textual Agent (NESTA) を提案する。
実験の結果,NESTA法は,未確認テストゲームや少ないトレーニングインタラクションから学習することで,深層強化学習技術よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-07-05T23:21:05Z) - Knowledge-enhanced Agents for Interactive Text Games [16.055119735473017]
テキストベースのゲームにおいてエージェントの機能的接地を改善するための知識注入フレームワークを提案する。
学習に基づくエージェントに注入するドメイン知識の2つの形態について考察する。
我々のフレームワークは、強化学習エージェントと言語モデルエージェントの2つの代表的なモデルクラスをサポートしている。
論文 参考訳(メタデータ) (2023-05-08T23:31:39Z) - Inherently Explainable Reinforcement Learning in Natural Language [14.117921448623342]
本稿では,本質的に説明可能な強化学習エージェントの開発に焦点をあてる。
この階層的説明可能な強化学習エージェントは、インタラクティブフィクション、テキストベースのゲーム環境で動作する。
私たちのエージェントは、説明責任を第一級市民として扱うように設計されています。
論文 参考訳(メタデータ) (2021-12-16T14:24:35Z) - LOA: Logical Optimal Actions for Text-based Interaction Games [63.003353499732434]
本稿では、強化学習アプリケーションの行動決定アーキテクチャである論理的最適行動(LOA)を提案する。
LOAは、自然言語インタラクションゲームのためのニューラルネットワークとシンボリック知識獲得アプローチの組み合わせである。
論文 参考訳(メタデータ) (2021-10-21T08:36:11Z) - Generalization in Text-based Games via Hierarchical Reinforcement
Learning [42.70991837415775]
本稿では,知識グラフに基づくRLエージェントを基盤とした階層型フレームワークを提案する。
高いレベルでは、メタポリシーが実行され、ゲーム全体をテキストゴールによって指定されたサブタスクのセットに分解する。
低レベルにおいては、目標条件付き強化学習を行うためにサブ政治が実行される。
論文 参考訳(メタデータ) (2021-09-21T05:27:33Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
対話型フィクション(IF)ゲームと実際の自然言語テキストは、言語理解技術に対する新たな自然な評価を提供する。
IFゲーム解決の新たな視点を捉え,MPRC(Multi-Passage Reading)タスクとして再フォーマットする。
論文 参考訳(メタデータ) (2020-10-05T23:09:20Z) - Learning Dynamic Belief Graphs to Generalize on Text-Based Games [55.59741414135887]
テキストベースのゲームをプレイするには、自然言語処理とシーケンシャルな意思決定のスキルが必要である。
本研究では,原文からエンドツーエンドに学習したグラフ構造化表現を用いて,エージェントがテキストベースのゲームでどのように計画・一般化できるかを検討する。
論文 参考訳(メタデータ) (2020-02-21T04:38:37Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。