Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap
- URL: http://arxiv.org/abs/2010.11899v3
- Date: Tue, 1 Dec 2020 23:07:08 GMT
- Title: Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap
- Authors: Anna Dawid, Micha{\l} Tomza
- Abstract summary: We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically investigate the magnetic properties and nonequilibrium
dynamics of two interacting ultracold polar and paramagnetic molecules in a
one-dimensional harmonic trap in external electric and magnetic fields. The
molecules interact via a multichannel two-body contact potential, incorporating
the short-range anisotropy of intermolecular interactions. We show that various
magnetization states arise from the interplay of the molecular interactions,
electronic spins, dipole moments, rotational structures, external fields, and
spin-rotation coupling. The rich magnetization diagrams depend primarily on the
anisotropy of the intermolecular interaction and the spin-rotation coupling.
These specific molecular properties are challenging to calculate or measure.
Therefore, we propose the quench dynamics experiments for extracting them from
observing the time evolution of the analyzed system. Our results indicate the
possibility of controlling the molecular few-body magnetization with the
external electric field and pave the way towards studying the magnetization of
ultracold molecules trapped in optical tweezers or optical lattices and their
application in quantum simulation of molecular multichannel many-body
Hamiltonians and quantum information storing.
Related papers
- Quantum dynamics of molecular ensembles coupled with quantum light:
Counter-rotating interactions as an essential component [0.0]
We study the impact of the rotating-wave approximation on the quantum dynamics of multiple molecules.
In the near-field zone, the reduction of inter-molecule interaction can reach up to 50 percent.
It is revealed that the rotating-wave approximation can profoundly affect the dynamics of the molecules in both strong and weak coupling regimes.
arXiv Detail & Related papers (2023-07-27T06:38:44Z) - Rotational properties of two interacting cold polar molecules: linear, symmetric, and asymmetric tops [0.0]
We model the molecules as quantum rigid rotors to take their rotational degrees of freedom into account.
We find that the properties of the molecules depend strongly on the field's direction at short separations.
The latter provides insight into the possible effects of accounting for rotational degrees of freedom in molecular dipolar gases.
arXiv Detail & Related papers (2023-03-03T20:17:56Z) - Two ultracold highly magnetic atoms in a one-dimensional harmonic trap [0.0]
We theoretically investigate the properties of two interacting ultracold highly magnetic atoms trapped in a one-dimensional harmonic potential.
We show the role of inability and symmetries in the dynamics by studying the time evolution of the observables.
The presented model may depict the on-site interaction of the extended Hubbard models, therefore giving a better understanding of the fundamental building block of the respective many-body quantum simulators.
arXiv Detail & Related papers (2022-05-18T14:44:37Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.