Quantum dynamics of molecular ensembles coupled with quantum light:
Counter-rotating interactions as an essential component
- URL: http://arxiv.org/abs/2307.14645v1
- Date: Thu, 27 Jul 2023 06:38:44 GMT
- Title: Quantum dynamics of molecular ensembles coupled with quantum light:
Counter-rotating interactions as an essential component
- Authors: Yi-Ting Chuang and Liang-Yan Hsu
- Abstract summary: We study the impact of the rotating-wave approximation on the quantum dynamics of multiple molecules.
In the near-field zone, the reduction of inter-molecule interaction can reach up to 50 percent.
It is revealed that the rotating-wave approximation can profoundly affect the dynamics of the molecules in both strong and weak coupling regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rotating-wave approximation to light-matter interactions is widely used
in the quantum electrodynamics Hamiltonian; however, its validity has long been
a matter of debate. In this article, we explore the impact of the rotating-wave
approximation on the quantum dynamics of multiple molecules in complex
dielectric environments within the framework of macroscopic quantum
electrodynamics. In general, we find that the energy shifts of the molecules
and the inter-molecule dipole-dipole interaction obtained in the weak coupling
regime are correct only when the counter-rotating interactions are considered.
Moreover, under the rotating-wave approximation, the energy shifts of the
ground-state molecules and a portion of the inter-molecule interaction are
discarded. Notably, in the near-field zone (short inter-molecular distance),
the reduction of inter-molecule interaction can reach up to 50 percent. We also
conduct a case study on the population dynamics of a pair of identical
molecules above a plasmonic surface. Through analytical and numerical analysis,
it is revealed that the rotating-wave approximation can profoundly affect the
dynamics of the molecules in both strong and weak coupling regimes, emphasizing
the need for careful consideration when making the rotating-wave approximation
in a multiple-molecule system coupled with quantum light.
Related papers
- Parametric tuning of dynamical phase transitions in ultracold reactions [3.176473295749319]
We show that the presence of generic interaction between formed molecules can fundamentally alter the nature of the critical point.
We find that the correlations introduced by this rather general interaction induce nontrivial many-body physics.
We provide analytical and numerical descriptions of these many-body effects, along with scaling laws for the reaction yield in both the adiabatic and non-adiabatic regimes.
arXiv Detail & Related papers (2024-03-14T11:24:32Z) - Rotational-state dependence of interactions between polar molecules [0.0]
We show that where molecules are in rotational states that differ by more than one quantum, they exhibit repulsive van der Waals interactions.
At temperatures below a millikelvin, this effect can reduce collisional loss by multiple orders of magnitude.
These repulsive interactions lead to applications in quantum simulation and impurity physics with ultracold polar molecules.
arXiv Detail & Related papers (2024-01-11T14:59:43Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap [0.0]
We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
arXiv Detail & Related papers (2020-10-22T17:35:46Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Molecule-photon interactions in phononic environments [0.0879626117219674]
Liquid quantum optical systems can interface photons, electronic degrees of freedom, localized mechanical vibrations and phonons.
In particular, the strong vibronic interaction between electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
We take here an open quantum system approach to the non-equilibrium dynamics of molecules embedded in a crystal.
arXiv Detail & Related papers (2019-12-05T15:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.